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*e theory of q-rung orthopair fuzzy sets (q-ROFSs) is emerging for the provision of more comprehensive and useful information
in comparison to their counterparts like intuitionistic and Pythagorean fuzzy sets, especially when responding to the models of
vague data with membership and non-membership grades of elements. In this study, a significant generalized model q-ROFS is
used to introduce the concept of q-rung orthopair fuzzy vector spaces (q-ROFVSs) and illustrated by an example. We further
elaborate the q-rung orthopair fuzzy linearly independent vectors. *e study also involves the results regarding q-rung orthopair
fuzzy basis and dimensions of q-ROFVSs.*emain focus of this study is to define the concepts of q-rung orthopair fuzzymatroids
(q-ROFMs) and apply them to explore the characteristics of their basis, dimensions, and rank function. Ultimately, to show the
significance of our proposed work, we combine these ideas and offer an application. We provide an algorithm to solve the
numerical problems related to human flow between particular regions to ensure the increased government response action against
frequently used path (heavy path) for the countries involved via directed q-rung orthopair fuzzy graph (q-ROFG). At last, a
comparative study of the proposed work with the existing theory of Pythagorean fuzzy matroids is also presented.

1. Introduction

Graph theory and combinatorial geometry are known to
have a lot of common grounds, particularly with regard to
their basic concepts. Making use of these similarities, a host
of research has been conducted for further exploration and
development of these fields. Whitney [1] was the one to
initiate the fundamental concept ofmatroids. By doing so, he
laid the foundation of an extremely vast field of matroid
theory that connected several basic tools like linear algebra,
graph, and combinatorial theory. *is matroid theory has
been widely applied by researchers in different scientific
areas.

Zadeh [2], in 1965, for the first time introduced fuzzy
logics and defined fuzzy sets (FSs). *ese sets were known
for real-life data, uncertainties, and vague information. Soon

after its introduction, fuzzy set theory became popular
among researchers and came up as a new field. Later,
Attanssov [3] expanded the concept of FSs and introduced
the intuitionistic fuzzy sets (IFSs) with the help of mem-
bership and non-membership values of elements, the sum of
which was not being more than 1. *ese IFSs are effectively
applied in theoretical as well as practical problems such as
optimization, decision making, and graphical ones in nu-
merous fields. *e idea of these sets was further extended by
Feng et al. [4] to give intuitionistic fuzzy soft sets (IFSSs).
*ey also presented several new operations to generalize the
concept of intuitionistic fuzzy soft sets (IFSSs). While
solving some decision-making problems, it was observed
that the sum of both membership and non-membership
values of elements exceeded one; however, some of their
squares remained less than one. To overcome such issues,
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Yager [5, 6] put forward the idea of IFSs with the in-
troduction of new Pythagorean fuzzy sets. Some useful
notions and results for FSs, IFSs, PFSs, and other types of
fuzzy sets have been presented in the literature [7–14]. It
seems difficult to solve the problems when the sum of the
square of the membership and non-membership values of
elements exceeds 1. We are unable to handle such kind of
information by means of PFSs. Yager [15] introduced
q-ROFSs in which the sum of the qth power of mem-
bership and nonmembership values of elements is
bounded by one. After that, q-ROFSs are frequently used
in decision making as q-ROFSs widened the range of
acceptable pairs rather than IFSs and PFSs with the pa-
rameter “q” adjustment. Recently, Garg used q-ROFSs to
introduce a novel concept of connection number-based
q-rung orthopair fuzzy set (CN-q-ROFS), defined some
operation laws, and proposed a method to handle mul-
tiattribute group decision-making (MAGDM) problems
[16]. Subsequently, in [17], he introduced the idea of
q-connection numbers for interval-valued q-rung
orthopair fuzzy set and used it to develop a method for
solving multiattribute group decision-making (MAGDM)
problems. At present, several studies paid close attention
to the information regarding q-ROFSs and provided
different novel methods [18–21].

*e graphical representation of objects has been a
subject of great interest for scientists. Recently, a number of
studies have involved both fuzzy and graph theories to deal
with the optimization related problems in the presence of
vague data. *e idea of fuzzy graphs came from Kaufmann
[22], while some basic concepts related to fuzzy graphs, such
as cycles and paths, were characterized by Rosenfield et al.
[23]. Akram and Naz [24] further used these concepts and
proposed a new work to find the energy of PFGs with their
applications. *eir work was mainly focused on operations
of fuzzy graphs (FGs), IFGs, PFGs, and their different types.
*ey also provided q-ROF competition graphs and studied
their applications. Sitara et al. [25] introduced the notion of
q-rung picture fuzzy graph structures and provided an al-
gorithm to describe their proposed model. *e refining of
the idea of hypergraphs given by Kaufmann was carried out
by Lee-Kwang and Lee. In addition, different researchers
investigated numerous features of FGs and fuzzy hyper-
graphs based on different FSs [26–31]. In 1988, the concept
of matroids in terms of FSs was linked and defined as G-V
fuzzy matroids by Goetschel and Voxman [32]. Later on,
bases and circuits of the fuzzy matroids were also defined by
them [33–36]. As time progressed, different FSs were used to
define different fuzzy matroids, and their properties were
also discussed by different researchers [37–42]. Recently, we
proposed the idea of Pythagorean fuzzy matroids (PFMs)
and described their application to decision making [43]. A
lot of work based on FSs, IFSs, and PFSs regarding matroid
theory has been discussed in the literature, but matroids
based on q-ROFSs are still unattended. *e existing models,
namely, IFMs and PFMs, are insufficient to deal with dif-
ferent decision-making problems which contain member-
ship and nonmembership values of elements whose sum of

their squares is greater than 1. *is drawback of existing
structures motivates us to present this work.

*e motivations of our work are as follows:

(1) *e q-ROFS is a generalized form of some existing
models, including IFSs and PFSs. On setting q � 1
and q � 2, we get IFSs and PFSs, respectively, as
special cases of q-ROFSs.

(2) *e existing IFMs and PFMs fail to deal with the
information involving membership and nonmem-
bership values whose sum of their squares is not less
than 1.

(3) Due to the more flexible approach of q-ROFSs, the
developed q-ROFMs can solve many decision-
making problems and overcome deficiencies of
existing models such as IFMs and PFMs.

*e main contributions of this work are as follows:

(1) Our work illustrates q-ROFVSs with an illustrative
example.

(2) Most importantly, the notion of q-ROFMs is defined
and characterized with its basis and dimension.

(3) *is study also provides various results regarding
q-ROFMs.

(4) Ultimately, an algorithm is developed to find an
optimal solution along with a particular application.

(5) To check the validity of our proposed work, a
comparative analysis with an existing model is also
given.

In this work, we present the idea of q-ROFVSs with a
numerical example and discuss their bases and dimensions.
We also discuss the q-rung orthopair fuzzy linearly inde-
pendent vectors. We further combined the q-ROFSs with the
fuzzy matroids and named them as q-ROFMs. We inves-
tigate the concepts of circuits, basis, and rank for q-ROFMs.
Note that for q � 1 and q � 2, our proposed q-ROFMs are
reduced to IFMs and PFMs, respectively. We also proposed
an application of our work regarding human trafficking
between different regions which supports them to find a
heavy path used by the traffickers so that they can increase
their government response action against this path by using
a directed graph having q-rung orthopair fuzzy information.
In the end, we give concluding remarks with some of the
future directions.

*e contents of this article are summarized as follows. In
Section 2, we recall some fundamental definitions including
crisp matroids with rank function, q-ROFSs with their score
functions, and some basic operations defined on q-ROFSs.
In Section 3, we first propose q-ROFVSs and then q-ROFMs.
We also discuss some of their basic properties in this section.
In Section 4, we explore an application and develop an
algorithm to illustrate the importance of our work. In
Section 5, we provide the numerical comparison of our
developed algorithm with the existing PFM approach [43].
In Section 6, we provide some conclusive remarks with
future directions.
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2. Preliminaries

Our interest in this section is to discuss the theory of
matroids and valuable concepts related to matroid theory to
understand the proposed work better. Although matroids
are defined differently by using various sets, here we write a
simple definition of crisp matroids.

Definition 1 (see [1]). Let A≠ ϕ be a set of finite elements
and P(A) denote the power set of A. For I ⊂ P(A), a non-
empty family of subsets, the pair M � (A,I) is called a
matroid (or crisp matroid) if it satisfies the following:

(1) ϕ ∈ I.
(2) If I2 ⊂ I1 with I1 ∈ I, then I2 ∈ I.
(3) If I1, I2 ∈ I with |I2|< |I1|, then another subset

I3 ∈ I exists such that I2 ⊂ I3 ⊆ I1 ∪ I2, where |I|

shows the number of elements of I.

*e element I ∈ I is called independent set inM. Also,
I is known as maximal independent in M if we do not have
such I′ ∈ I that contains I.

Definition 2 (see [1]). Suppose that M is a matroid and
I ∈ I. If I is maximal independent in M, then I is called
base of M and B(M) represents the family of all bases.

Definition 3. Let J ∈ P(A) be a subset with J ∉ I; then, J is
called dependent subset. A circuit of M is the subset
J ∈ P(A)∖I where J is inclusion-wise minimal dependent
subset.

Definition 4 (see [1]). Let M � (A,I) be a matroid.
Consider a mappingRA: P(A)⟶ 0, 1, 2, . . . , |A|{ } defined
as

RA(A) � max I′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌: I′ ⊂ A, I ∈ I􏽮 􏽯. (1)

*en, RA is called rank function of M.

Definition 5 (see [2]). Consider a non-empty set X. *e
fuzzy set F is defined as

F � x, σF(x)( 􏼁|x ∈ X􏼈 􏼉. (2)

*e mapping σF: X⟶ [0, 1] assigns the membership
value of x ∈ X to F and FS(X) represents the family of all
fuzzy sets on X.

Definition 6 (see [32]). Let X be a non-empty finite universe
of discourse and F⊆FS(X). For any fuzzy sets
F1, F2, F3 ∈ FS(X), the collectionF satisfies the following:

(1) ϕ ∈ F.
(2) If F1 ⊂ F2 andF2 ∈F, thenF1 ∈F,whereF1 ⊂

F2 meansF1(x)<F2(x), for all x ∈ X.
(3) Let F1, F2 ∈F and |supp(F1)|< |supp(F2)| where

supp(F) � x ∈ X|F(x)> 0{ } and |F| � 􏽐x∈X(F(x));
then, another F3 ∈F exists satisfying

(a) F1 ⊂ F3 ⊆F1 ∪F2, for any x ∈ X, and union is
defined as (F1 ∪F2)(x) � max F1(x), F2(x)􏼈 􏼉.

(b) m(F3)≥min m(F1), m(F2)􏼈 􏼉, and m(Fi) �

min Fi(x): x ∈ supp(Fi)􏼈 􏼉 is defined for any
x ∈ X.

*e pairFM(X) � (X,F) is called a fuzzy matroid and
F is the subfamily of all independent FSs of the matroid
FM(X).

Definition 7 (see [15]). Let X be a non-empty fixed set with
finite elements. *en, the set ζ � (ζ+

, ζ −
) defined on a fixed

set X is called q-ROFS if it satisfies

(1) q≥ 1.
(2) ζ+

(x) ∈ [0, 1] and ζ −
(x) ∈ [0, 1] with the property

(ζ+
(x))q + (ζ −

(x))q ≤ 1, for any x ∈ X.

It can be seen easily that for q � 1 and q � 2, these fuzzy
sets are reduced to IFS and PFS, respectively. *e q-rung
orthopair degree of hesitance for x ∈ X is given as

ϱζ(x) �

��������������

1 − ζ+
( 􏼁

q
− ζ −

( )
qq

􏽱

. (3)

Definition 8 (see [15]). Let (ζ+
, ζ −

) be a q-ROFS and for
x ∈ X, (ζ+

(x), ζ −
(x)) be a q-rung orthopair fuzzy number

(q-ROFN). *en, a score function S􏽥q of (ζ+
(x), ζ −

(x)) is
defined as

S􏽥q ζ+
(x), ζ −

(x)( 􏼁 �
1
2

1 + ζ+
(x)( 􏼁

q
− ζ −

(x)( )
q

( 􏼁, 0≤S􏽥q ζ+
(x), ζ −

(x)( 􏼁≤ 1. (4)

Definition 9 (see [15]). Let ζ � (ζ+
, ζ −

) be a q-ROFS and
for x ∈ X, (ζ+

(x), ζ −
(x)) be a q-ROFN. *en, for

any x ∈ X, an accuracy function A􏽥q for q-ROFN is de-
fined as
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A􏽥q ζ+
(x), ζ −

(x)( 􏼁 � 1 − ϱζ(x). (5) Definition 10 (see [41]). Let ζ1 and ζ2 be two q-ROFSs.*en,
for any x ∈ X, ζ1 ∪ ζ2 � (ζ+

1 , ζ −
1 )∨(ζ+

2 , ζ −
2 ) and

ζ1 ∩ ζ2 � (ζ+
1 , ζ −

1 )∧(ζ+
2 , ζ −

2 ) are called union and intersection,
respectively, defined as

ζ1 ∪ ζ2( 􏼁(x) �

ζ+
1 , ζ −

1( 􏼁(x), if S􏽥q ζ+
1 , ζ −

1( 􏼁(x)>S􏽥q ζ+
2 , ζ −

2( 􏼁(x),

ζ+
1 , ζ −

1( 􏼁(x), if S􏽥q ζ+
1 , ζ −

1( 􏼁(x) � S􏽥q ζ+
2 , ζ −

2( 􏼁(x) andA􏽥q ζ+
1 , ζ −

1( 􏼁(x)≥A􏽥q ζ+
2 , ζ −

2( 􏼁(x),

ζ+
2 , ζ −

2( 􏼁(x), if S􏽥q ζ+
1 , ζ −

1( 􏼁(x) � S􏽥q ζ+
2 , ζ −

2( 􏼁(x) andA􏽥q ζ+
1 , ζ −

1( 􏼁(x)<A􏽥q ζ+
2 , ζ −

2( 􏼁(x),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ζ1 ∩ ζ2( 􏼁(x) �

ζ+
2 , ζ −

2( 􏼁(x), if S􏽥q ζ+
1 , ζ −

1( 􏼁(x)>S􏽥q ζ+
2 , ζ −

2( 􏼁(x),

ζ+
2 , ζ −

2( 􏼁(x), if S􏽥q ζ+
1 , ζ −

1( 􏼁(x) � S􏽥q ζ+
2 , ζ −

2( 􏼁(x) andA􏽥q ζ+
1 , ζ −

1( 􏼁(x)≥A􏽥q ζ+
2 , ζ −

2( 􏼁(x),

ζ+
1 , ζ −

1( 􏼁(x), if S􏽥q ζ+
1 , ζ −

1( 􏼁(x) � S􏽥q ζ+
2 , ζ −

2( 􏼁(x) andA􏽥q ζ+
1 , ζ −

1( 􏼁(x)<A􏽥q ζ+
2 , ζ −

2( 􏼁(x).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

Here, we denote the family of all q-ROFSs on X byQ(X).
Let ζ � 〈x, ζ+

(x), ζ −
(x)|x ∈ X〉 be a q-ROFS; then, some

notions are defined as follows.

(1) |ζ| � 􏽐x∈X(ζ+
(x), ζ −

(x)).
(2) Supp(ζ+

, ζ −
) � x ∈ X: S􏽥q(ζ+

(x), ζ −
(x))> 0􏼚 􏼛.

(3) Qq(ζ+
, ζ −

) � x ∈ X: S􏽥q(ζ+
(x), ζ −

(x))≥ q􏼚 􏼛, for
0≤ q≤ 1.

(4) R+(ζ+
, ζ −

) � S􏽥q(ζ+
(x), ζ −

(x))|S􏽥q􏼚 (ζ+
(x), ζ −

(x))> 0}. A q-ROFS (ζ+
, ζ −

) is called elementary if
R+(ζ+

, ζ −
) � 1.

(5) h(ζ) � maxx∈X(ζ+
(x), ζ −

(x)) is called height of ζ
and the set ζ is called normal q-ROFS for the height
h(ζ) � (1, 0).

Note that we denote the smallest and the largest q-rung
orthopair fuzzy elements 0 � (0, 1) and 1 � (1, 0),
respectively.

3. q-Rung Orthopair Fuzzy Vector Spaces

*is section illustrates the concept of q-ROFVSs with their
basis and dimension and presents q-rung orthopair fuzzy
linearly dependent and independent vectors. Here, we also
present matroids based on q-ROFSs and discuss their prop-
erties regarding circuits, basis, and their rank function. Katsaras
and Liu [44] introduced the hybrid concept of fuzzy vector
spaces and discussed their characteristics. Later, many re-
searchers applied different fuzzy sets to the elementary con-
cepts of vector spaces. Here, we use q-ROFSs to generalize the
Pythagorean fuzzy vector spaces [43] and define q-ROFVSs.

Definition 11. Let X be a non-empty finite vector space over
the field F . *e q-ROFS ζ � (ζ+

(x), ζ −
(x)), forx ∈ X, is

called q-ROFVS over X, if for scalars
a, b ∈ F and for any x, y ∈ X, we have

ζ+
(ax + by)≥min ζ+

(x), ζ+
(y)􏼈 􏼉,

ζ −
(ax + by)≤max ζ −

(x), ζ+
(y)􏼈 􏼉,

(7)

where 0≤ (ζ+
(x))q + (ζ −

(x))q ≤ 1 holds for defined map-
pings ζ+

: X⟶ [0, 1] and ζ −
: X⟶ [0, 1].

Here, the set of all q-ROFVSs over X is denoted by the
pair 􏽥X � (X, ζ).

*e following proposition illustrates that membership
and non-membership functions assign unchanged values
under scalar multiplication in q-ROFVSs.

Proposition 1. Let 􏽥X � (X, ζ) be a q-ROFVS. ;e following
two properties hold for each x, y ∈ X:

(1) ζ+
(0, 0) � maxx∈Xζ

+
(x) and ζ −

(0, 0) � minx∈Xζ
−

(x).
(2) For any non-zero scalar k ∈ F ,

ζ+
(kx) � ζ+

(x) and ζ −
(kx) � ζ −

(x).

Proof. *e proof of properties (15) and (18) is very
straightforward (see Definition 11). □

Proposition 2. Let x, y ∈ X with ζ+
(x) ≠ ζ+

(y) and
ζ −

(x)≠ ζ −
(y); then, we have

ζ+
(x + y)≥min ζ+

(x), ζ+
(y)􏼈 􏼉,

ζ −
(x + y)≤max ζ −

(x), ζ −
(y)􏼈 􏼉.

(8)

Proof. To prove, from Definition 11, let a � b � 1 and hence
ζ+

(x + y)≥min ζ −
(x), ζ+

(y)􏼈 􏼉 and ζ −
(x + y)≤max ζ −

(x),{

ζ −
(y)}. □

Definition 12. Let X be a non-empty finite universe and 􏽥X

be a q-ROFVS over F . *en, the set of vectors
x1, x2, x3, . . . , xr􏼈 􏼉 ⊂ X is called a q-rung orthopair fuzzy
(q-ROF) linearly independent in 􏽥X if

(1) x1, x2, . . . , xr􏼈 􏼉 is linearly independent.
(2) For any a1, a2, . . . , ar􏼈 􏼉 ⊂ F , we have
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ζ+
􏽘

r

j�1
ajxj

⎛⎝ ⎞⎠ � minr
j�1ζ

+
ajxj􏼐 􏼑,

ζ −
􏽘

r

j�1
ajxj

⎛⎝ ⎞⎠ � maxr
j�1ζ

−
ajxj􏼐 􏼑.

(9)

Proposition 3. Let 􏽥X � (X, ζ) be a q-ROFVS over F .
Consider any set of vectors with non-zero elements
αi􏼈 􏼉

r

i�1 ∈ X∖ 0{ } such that for i≠ j, ζ(αi)≠ ζ(αj). ;en, the set
αi􏼈 􏼉

r

i�1 is linearly and q-ROF linearly independent.

Proof. By using the induction on r, the statement is true for
r � 1. We suppose that the statement is true for r. So, αi􏼈 􏼉

r

i�1
is q-ROF linearly independent. Let αi􏼈 􏼉

r+1
i�1 ∈ X, 0{ } such that

for i≠ j, (ζ+
(αi), ζ

−
(αi))≠ (ζ+

(αj), ζ
−

(αj)) and suppose
that the set αi􏼈 􏼉

r+1
i�1 is not linearly independent. *us, for

ϕ≠ v ⊂ 1, 2, . . . , r{ }, we have αr+1 � 􏽐i∈v(aiαi) where ai ≠ 0
for all i ∈ v. *en,

ζ+ αr+1( 􏼁 � min
i∈v

ζ+
aiαi( 􏼁( 􏼁 � min

i∈v
ζ+ αi( 􏼁( 􏼁 ∈ ζ+ αi( 􏼁􏼈 􏼉

r

i�1,

ζ − αr+1( 􏼁 � max
i∈v

ζ −
aiαi( 􏼁( 􏼁 � max

i∈v
ζ − αi( 􏼁( 􏼁 ∈ ζ − αi( 􏼁􏼈 􏼉

r
i�1,

(10)

which gives that (ζ+
(αr+1), ζ

−
(αr+1)) ∈ (ζ+

(αi), ζ
−

(αi))􏼈 􏼉
r

i�1
and contradicts that αi􏼈 􏼉

r+1
i�1 has distinct values and hence is

linearly independent. Propositions 1 and 2 show that αi􏼈 􏼉
r

i�1
is q-ROF linearly independent. □

Definition 13. Let 􏽥X � (X, ζ) be a q-ROFVS and
B � βj􏽮 􏽯

r

j�1, where each βj ∈ X. *en, the set B is called
q-ROF basis in 􏽥X, if it satisfies

(1) *e set B is basis in X.
(2) For scalars a1, a2, . . . , ar􏼈 􏼉 ⊂ F , we have

ζ+
􏽘

r

j�1
ajβj

⎛⎝ ⎞⎠ � minr
j�1ζ

+
ajβj􏼐 􏼑,

ζ −
􏽘

r

j�1
ajβj

⎛⎝ ⎞⎠ � maxr
j�1ζ

−
ajβj􏼐 􏼑.

(11)

Definition 14. Let X≠ ϕ and 􏽥X be a q-ROFVS having basis
B. *en, the dimension of q-ROFVS is given by

dimq( 􏽥X) � sup
B

􏽘
x∈B

ζ+
(x), ζ −

(x)( 􏼁⎛⎝ ⎞⎠. (12)

It is easy to see that dimq is a function from the class of all
q-ROFVSs to [0,∞)∪ ∞{ }. A q-ROFVS is said to be finite
dimensional if and only if dimq( 􏽥X) � n<∞.

Proposition 4. Let 􏽥X � (X, ζ) be a q-ROFVS over F . For any
x, y ∈ X, if ζ+

(x)> ζ+
(y) and ζ −

(x)< ζ −
(y), we have

ζ+
(x + y) � ζ+

(y),

ζ −
(x + y) � ζ −

(y).
(13)

Proof. We use Proposition 2:

ζ+
(x + y)≥min ζ+

(x), ζ+
(y)􏼈 􏼉. (14)

Since ζ+
(x)> ζ+

(y), then

ζ+
(x + y)≥ ζ+

(y). (15)

Now we write

ζ+
((x + y) − x) � ζ+

(y), (16)

which implies the result

ζ+
(y)≥min ζ+

(x + y), ζ+
(x)􏼈 􏼉. (17)

Since ζ+
(x)> ζ+

(y), then

ζ+
(y)≥ ζ+

(x + y), (18)

which proves that ζ+
(x + y) � ζ+

(y). Similarly, we use
Proposition 2:

ζ −
(x + y)≤max ζ −

(x), ζ −
(y)􏼈 􏼉. (19)

Since ζ −
(x)< ζ −

(y), then

ζ −
(x + y)≤ ζ −

(y). (20)

Now we write

ζ −
((x + y) − x) � ζ −

(y), (21)

which implies the result

ζ −
(y)≤max ζ −

(x + y), ζ −
(x)􏼈 􏼉. (22)

Since ζ −
(x)< ζ −

(y), then

ζ −
(y)≤ ζ −

(x + y), (23)

which proves that ζ −
(x + y) � ζ −

(y).
*e following example illustrates Definition 11

clearly. □

Example 1. Let X � R3 and ζ � (ζ+
, ζ −

) be a 5-ROFS de-
fined on X. For any α � (x, y, z) ∈ R3, the mappings
ζ+

: R3⟶ [0, 1] and ζ −
: R3⟶ [0, 1] are defined by
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ζ+
(α) �

1
2
, if (0, 0, 0),

1
4
, if (R∖ 0{ }, 0, 0), (0,R∖ 0{ }, 0) or (0, 0,R∖ 0{ }),

1
2
, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ −
(α) �

0, if (0, 0, 0),

1
4
, if (R∖ 0{ }, 0, 0), (0,R∖ 0{ }, 0) or (0, 0,R∖ 0{ }),

otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

respectively. It can be easily seen that, for α1 � α2 � (0, 0, 0),
the case is trivial.

For the second case, consider two vectors α1 and
α2 from X with one non-zero component, i.e., α1(x, 0, 0)

and α2(0, y, 0); then, we have min ζ+
(α1), ζ

+
(α2)􏼈 􏼉 � (1/4)

and max ζ −
(α1), ζ

−
(α2)􏼈 􏼉 � (1/4). For any a, b ∈ R, we

have

ζ+
aα1 + bα2( 􏼁 � ζ+

(ax, by, 0) �

1
2
, if a � b � 0 or a≠ 0, b≠ 0,

1
4
, if a � 0 or b � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ζ −
aα1 + bα2( 􏼁 � ζ −

(ax, by, 0) �

0, if a � b � 0 or a≠ 0, b≠ 0,

1
4
, if a � 0 or b � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

Clearly, it satisfies all the conditions of Definition 11.
Now, consider α1 and α2 ∈ X with one zero component

and two non-zero components, i.e., α1(x1, y1, 0) and
α2(x2, 0, z2); then, min ζ+

(α1), ζ
+
(α2)􏼈 􏼉 � (1/2) and

max ζ −
(α1), ζ

+
(α2)􏼈 􏼉 � (1/2). For any a, b ∈ R,

ζ+
aα1 + bα2( 􏼁 � ζ+

ax1 + bx2, ay1, bz2( 􏼁 �
1
2
,

ζ −
aα1 + bα2( 􏼁 � ζ −

ax1 + bx2, ay1, bz2( 􏼁 � 0,

(26)

which satisfies the conditions of Definition 11.

Definition 15. Let X≠ ϕ be a finite universe. *e subset
Q⊆Q(X) is a subfamily of q-ROFSs satisfying

(1) ϕ ∈ Q.
(2) For any ζ1 � (ζ+

1 , ζ −
1 ) ∈ Q, ζ2 � (ζ+

2 , ζ −
2 ) ∈ Q(X)

where 0≤ (ζ+
1(y))q + (ζ −

1(y))q ≤ 1,
0≤ (ζ+

2(y))q + (ζ −
2(y))q ≤ 1, q≥ 1, and if ζ2 ⊂ ζ1,

then ζ2 ∈ Q, for all y ∈ X.
(3) For any ζ1, ζ2 ∈ Q and |supp(ζ1)|< |supp(ζ2)|, there

exists ζ3 ∈ Q such that

(a) ζ1 ⊂ ζ3 ⊆ ζ1 ∪ ζ2, for any y ∈ X.

(b) m(ζ3) ≥ inf m(ζ1), m(ζ2)􏼈 􏼉, m(ζ i) � inf S􏽥q (ζ i􏼚

(x))|x ∈ supp(ζ i)}.

*en, the pair QM(X) � (X,Q) is called q − ROFM and
the set Q is the subfamily of all independent q-ROFSs of
QM(X).

Proposition 5. Let 􏽥X � (X, ζ) be a q-ROFVS and Q be a
subset of Q(X) containing q-ROF linearly independent col-
umn vectors in 􏽥X. ;e pair (X,Q) is a q-ROFM on X.

Proof. Suppose that X is a non-empty set containing col-
umn labels of a q-ROF matrix, and ζx represents a q-ROF
submatrix containing those columns which are labeled in X.
Consider a set Q of q-ROF linearly independent column
vectors of ζx, i.e.,

Q � ζx ∈ Q(X)|column vectors of ζx are q􏼈

− rung orthopair fuzzy linearly independent􏼉.
(27)

For any submatrix ζx � [aij]m×n, we have
|ζx| � 􏽐

m
i�1 sup ξx(ai1), ξx(ai2), . . . , ξx(ain)􏼈 􏼉. It is easy to see

from Definitions 11 and 15 that (X,Q) is OM(X).
Note that σ ∉ Q is called dependent q − ROFS. □

Definition 16. Let QM(X) be a q − ROFM and Qc be a
family of dependent q − ROFSs in QM(X). *e minimal
dependent (inclusion wise) set σ ∈ Qc is called q-ROF circuit
of QM(X) and Qc(QM) represents the subclass of all
circuits of QM, i.e.,

Qc(QM) � σ|σ ∈ Qc, inclusion − wise minimal􏼈 􏼉. (28)

Note that the elements of Qc(QM) follow the properties:

(1) ϕ ∉ Qc(QM).
(2) Let σ1 and σ2 be q-rung orthopair fuzzy circuits with

σ1 ⊆ σ2; then, supp(σ1) � supp(σ2).
(3) Let σ1, σ2 ∈ Qc(QM) and α ∈ Q(X) with

α(x) � inf σ1(x), σ2(x)􏼈 􏼉 where x ∈ supp(σ1 ∩ σ2).
*en, there exists σ3 satisfying

(a) σ3 ≠ ϕ and σ3 ∈ Qc(QM).
(b) σ3 ⊆ (σ1 ∪ σ2) − (x, α(x)){ }.

Definition 17. Let QM(X) � (X,Q) be a q-ROFM. Con-
sider an element ζ i ∈ Q; then, ζ i is called maximal inde-
pendent set in a matroid QM(X) if there does not exist
ζj ∈ Q that contains ζ i. A maximal independent set in
QM(X) is called q-ROF base or basis of QM(X). *e
collection of all q-ROF basis is defined as

B(PM) � ζ | ζ ∈ Q, ξ ismaximal independent inQM􏼈 􏼉.

(29)

Note that although q-ROF basis contains all the inde-
pendent sets in QM(X), there exist some QM(X) that do
not have q-ROF basis.
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Example 2. LetQ(X) be a family of all q-ROFSs defined on a
non-empty set X. *en, for a positive integer i and |X| � j

with i≤ j, the set Q is defined as

Q � ζ ∈ Q(X): |supp(ζ)|≤ i􏼈 􏼉. (30)

*e pair (X,Q) � (UF)i
j is called q-ROF uniform

matroid. Note that the subfamilies of all q-ROFSs of X with
the sizes i + 1 and i are called the q-ROF circuits and q-ROF
basis of (UF)i

j, respectively.

Definition 18. Let QM(X) be a q-ROFM. *e q-ROF rank
function QR: Q(X)⟶ [0,∞) × [0,∞) is defined as

QR(μ) � sup |ζ|: ζ ⊆ μ and ζ ∈ Q􏼈 􏼉, (31)

where |ζ| � 􏽐y∈X(ζ+
(y), ζ −

(y)) � (􏽐y∈Xζ
+
(y), 􏽐y∈Xξ

−

(y)). Also, |ζ1|≤ |ζ2| iff 􏽐y∈Xζ
+
1(y)≤􏽐y∈Xξ

−
2(y) and

􏽐y∈Xζ
−
1(y)≥􏽐y∈Xζ

−
2(y).

It is observed from definition that the q-ROF rank
function follows the following properties:

(1) If ζ ∈ Q(X), then QR(ζ) � |ζ|.
(2) If ζ ∈ Q(X), then QR(ζ)≤ |ζ|.
(3) If ζ1, ζ2 ∈ Q(X) and ξ1 ⊆ ζ2, thenQR(ζ1)≤QR(ζ2).

Definition 19. Let q1, q2, . . . , qn􏼈 􏼉 be a set of “n” q-ROFNs.
*en, the pair qi � (qi

′, si
′) satisfies the ordering for each

1≤ i≤ n:

qi
′ ≤ qi+1′ , si

′ ≥ si+1′ ⟺ qi ≤ qi+1. (32)

We say q instead of q � (q′, s′) and 0≤ q≤ 1, where 0 �

(0, 1) and 1 � (1, 0) with S􏽥q(0) � 0 andS􏽥q(1) � 1,
respectively.

Definition 20. *e q-cut level set for 0< q≤ 1 of a q-ROFS
ζ ∈ Q(X) is a crisp set which is defined as follows:

Qq(ζ) � x ∈ X: ζ+
(x)≥ q′ and ζ −

(x)≤ s′􏼈 􏼉. (33)

Theorem 1. LetQM(X) � (X,Q) be a q-ROFM andQq be a
collection of all q-cut levels of q-ROF independent sets where
0< q≤ 1, i.e.,

Qq � Qq(ξ)|ξ ∈ Q􏽮 􏽯. (34)

*en, Mq � (X,Qq) is a crisp matroid on X.

Proof. *e proof is very straight forward fromDefinition 20,
and Qq is a collection of crisp subsets of X. *en, for each
0< q≤ 1, we have Mq � (X,Qq). □

Definition 21. Let X≠ ϕ be a finite universe and QM(X) be
a q-ROFM.*en, we have a finite sequence q1 < q2 < · · · < qn

such that

(1) q0 � 0, qn ≤ 1.
(2) Qr is non − empty, if 0< r≤ qn, andQr is empty, if r

> qn.

(3) If qi < r1, r2 < qi+1, thenQr1
� Qr2

, 0≤ i≤ n − 1.
(4) If qi < r1 < qi+1 < r2 < li+2, thenQr1

⊃Qr2
, 0≤ i≤ n − 2.

*e sequence q0 � 0, q1, q2, . . . , qn is called fundamental
sequence of QM(X).

Corollary 1. From;eorem 1 and Definition 21, for 1≤ i≤ n,
assume that qi � (1/2)(qi− 1 + qi); then,Mq1

⊃Mq2
⊃ · · ·⊃Mqn

is called a Mq-induced matroid sequence.

Theorem 2. Let 0 � q0 < q1 < q2 < · · · < qn ≤ 1 be a finite
fundamental sequence and (X,Qq1

), (X,Qq2
), . . . , (X,Qqn

)

be finite sequence of crisp matroids regarding this funda-
mental sequence. For each qi− 1 < q≤ qi(i � 1, 2, . . . , n), we
assume Qq � Qqi

and for qn < q≤ 1,Qq � ϕ. ;en the pair
(X, 􏽢Q) is a q − ROFM where 􏽢Q is defined as

􏽢Q � ζ ∈ Q(X)|Qq(ζ) ∈ Qq, 0< q≤ 1􏽮 􏽯. (35)

Proof. It is easy to see that ϕ ∈ 􏽢Q as Qq � ϕ for qn < q≤ 1.
Now, assume that ζ1 ∈ 􏽢Q, and ζ2 ∈ Q(X) such that ζ2 ⊆ ζ1. It
is clear from definition of 􏽢Q that for each 0< q≤ 1,
Qq(ζ1) ∈ Qq, so Qq(ζ2)⊆Qq(ζ1), and since we have that
(X,Qq) is a crisp matroid for Qq, it means Ql(ζ2) ∈ Ql, and
hence ζ2 ∈ 􏽢Q and proves (18) of Definition 15. Now, let
ζ1, ζ2 ∈ 􏽢Q with |supp(ζ2)|< |supp(ζ1)|. It is known that

m(ζ i) � inf S􏽥q(ζ i(x)): x ∈ supp(ζ i)􏼚 􏼛. Let ζ be a q − ROFN

defined as

η � min m ζ1( 􏼁, m ζ2( 􏼁􏼈 􏼉. (36)

It is easy to observe from definition of η that Qη contains
the support of both ζ1 and ζ2. Note that Qη contains inde-
pendent subsets; then, there exists an independent subset
I ∈ Qη satisfying

(1) I contains supp(ζ2), for all x ∈ X.
(2) I⊆ supp(ζ1)∩ supp(ζ2).

Let us define ζ3 as

ζ3(y) �

η, y ∈ I − supp ζ2( 􏼁􏼈 􏼉,

ζ2(y), y ∈ supp ζ2( 􏼁,

0 � (0, 1), otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(37)

which shows that ζ3 is q − ROFS and satisfies (20) of Def-
inition 15. Hence, (X, 􏽢Q) is q − ROFM. □

Theorem 3. Let QM � (X,Q) be a q − ROFM and from
Definition 20 and Qq defined in;eorem 1, for each 0< q≤ 1,
Mq � (X,Qq) is a crisp matroid. Let
􏽢Q � ζ ∈ Q(X)|Qq(ζ) ∈ Qq, 0< l≤ 1􏽮 􏽯. ;en, Q � 􏽢Q.

Proof. It is easy to deduce from definition of 􏽢Q that Q ⊂ 􏽢Q.
For ζ ∈ 􏽢Q, let ]i􏼈 􏼉

t

i�1 be a non-zero q-rung orthopair fuzzy
range with ]i � (]∗i , ]i

′) and order ]1 > ]2 > · · · > ]t > 0. One
can notice that for each 1≤ i≤ t and ζ ∈ 􏽢Q, we have that
Q]i

(ζ) ∈ Q]i
. So, if 1≤ i≤ t − 1, then from Definition 21,

Q]i
(ζ) ⊂ Q]i+1

(ζ). To prove 􏽢Q ⊂ Q, we define a q-rung
orthopair fuzzy set φ ∈ Q(X) for each 1≤ i≤ t and u ∈ X as
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φi(u) �
]i � ]∗i , ]i

′( 􏼁, if u is in q − cut for ζ,

0 � (0, 1), otherwise,

⎧⎨

⎩ (38)

with 0< (]∗)q + (]′)q ≤ 1. Since we haveQ]i
(ζ) ∈ Q]i

, ∪ iφi �

ζ for 1≤ i≤ t that gives φi ∈ Q. Here to show ζ ∈, we use
induction process. For each 1≤ i≤ t, we consider

supp φi( 􏼁 � uk􏼈 􏼉
ni

k�1,

supp(ζ) � uj􏽮 􏽯
nt

j�1.

⎧⎪⎨

⎪⎩
(39)

Since φ1 ∈ Q is an independent q-ROFS, it is enough to
show that if ∪ l− 1

i�1φi ∈ Q for r> l − 1, then for each r> l, we
have ∪ l

i�1φi ∈ Q. Define

Φ1(u) �
]l � ]∗l , ]l

′( 􏼁, if u ∈ u1, u2, . . . , unl− 1+1􏽮 􏽯,

0 � (0, 1), otherwise,

⎧⎨

⎩

(40)

which shows that for each 1< i< l − 1, ]i > ]l, so Φ1 ⊂ φl and
Φ1 ∈ Q. Define another q-ROFS λ as

Ψ1(u) �
ζ unl− 1+1􏼐 􏼑 � ]∗l , ]l

′( 􏼁, if unl− 1+1,

(0, 1), otherwise.

⎧⎨

⎩ (41)

Using the induction method, we have supp(∪ l− 1
i�1φi) �

u1, u2,􏼈 . . . , unl− 1
} where ∪ l− 1

i�1φi is an independent set, and
m(∪ l− 1

i�1φi)􏼈 􏼉> ]l. So, from Definition 15, ∪ l
i�1φi ∪Ψ1 ∈ Q is

independent in QM. If nl− 1 + 1 � nl, then we have that
∪ l

i�1φi is also an independent set in QM. But, if nl− 1 + 1< nl,
then to move further, we define q-ROFS as

Φ2(u) �
]∗l , ]l
′( 􏼁, if u ∈ u1, u2, . . . , unl− 1+1􏽮 􏽯∪ unl− 1+2􏽮 􏽯,

(0, 1), otherwise.

⎧⎨

⎩

(42)

From Definition 19, Φ2 ∈ Q(X), and from Φ2 ⊂ φl,
Φ2 ∈ Q is an independent set in QM. Similarly, define
another q-ROFS as

Ψ2(u) �
ζ unl− 1+2􏼐 􏼑 � ]∗l , ]l

′( 􏼁, if unl− 1+2,

(0, 1), otherwise.

⎧⎨

⎩ (43)

Since supp(∪ l− 1
i�1φi ∪Ψ1) � u1, u2, . . . , unl− 1

􏽮 􏽯∪ unl− 1+1􏽮 􏽯

and (∪ l− 1
i�1φi ∪Ψ1)> ]l, then again from Definition 15,

∪ l− 1
i�1φi ∪Ψ1 ∪Ψ2 is an independent set in QM. So, ∪ l− 1

i�1φi is
also an independent set in QM for nl− 1 + 1 � nl. But, if
nl− 1 + 1< nl, then to proceed further, we obtain a new
q-ROFS χn � ∪ l− 1

i�1φi ∪Ψ1 ∪Ψ2 · · · ∪Ψn and hence
χn � ∪ l− 1

i�1φi is an independent set in QM.
*e next result is the direct consequence of *eorem 1.4

discussed in [34]. □

Corollary 2. Let QM � (X,Q) be a q − ROFM and
ζ ∈ Q(X). ;en, ζ ∈ Q(X) if and only if for each
q ∈R+(ζ)we haveQq(ζ) ∈ Qq.

Theorem 4. Let ζ ∈ Q be a q-rung orthopair fuzzy base of a
q − ROFM (X,Q). ;en, for each x ∈ X, ϱζ(x) � 0.

Proof. Suppose on contrary that xi ∈ X with ϱζ(xi) � α> 0
and take α∗ � (α/2). Let ζ′ ∈ Q(X) such that, for each
x ∈ X, S􏽥q(ζ′) � S􏽥q(ζ). Define

ϱζ′(x) �
ϱζ(x), if x ∈ X and x≠xi,

α∗, otherwise.
􏼨 (44)

A􏽥q(ζ) � A􏽥q(ζ′), which show that ζ < ζ′. But, for each
q ∈R+(ζ), we have Qq(ζ) � Qq(ζ′). Hence, it is easy to
see from Corollary 2 that ζ′ ∈ Q, which gives the contra-
diction and completes the proof. □

Theorem 5. Let 0 � q0 < q1 < q2 · · · < qn ≤ 1 be a funda-
mental sequence of q − ROFMQM � (X,Q). Let
ζ � (ζ+

, ζ −
) be a q-rung orthopair fuzzy basis of QM; then,

R
+ ζ+

, ζ −
( 􏼁⊆ q1, q2, . . . , qn􏼈 􏼉. (45)

Proof. Let (ζ+
i , ζ −

i ) be a q-run orthopair fuzzy basis. So,
(ζ+

i , ζ −
i ) ∈ Q. For each q ∈R+(ζ+

i , ζ −
i ), we have Qq(ζ+

i , ζ −
i ).

Suppose that there exists t ∈R+(ζ+
i , ζ −

i ) with qi < t< qi+1
and λ � (qi+1 − t)/2. Assume that a q-rung orthopair fuzzy
set ζj � (ζ+

j ζ
−
j ) is an elementary q-ROFS, defined with the

supp(ζ+
j , ζ −

j ) � Qt(ζ
+
i , ζ −

i ) and R+(ζ+
j , ζ −

j ) � (t + qi+1)/2.
Take (ζ+

k , ζ −
k ) � (ζ+

i , ζ −
i )∨(ζ+

j , ζ −
j ) and for each 0< q≤ 1, if

t< q< (t + qi+1)/2, then Qq(ζ+
k , ζ −

k ) � Qt(ζ
+
i , ζ −

i ) ∈ Qt; oth-
erwise, Qq(ζ+

k , ζ −
k ) � Qq(ζ+

i , ζ −
i ) ∈ Qq. By Corollary 2,

(ζ+
k , ζ −

k ) ∈ Q. So, for (ζ+
i , ζ −

i ), there exists xr ∈ supp(ζ+
i , ζ −

i )

with S􏽥q(ζ+
i (xr), ζ

−
i (xr)) � t, and hence S􏽥q (ζ+

k

(xr), ζ
−
k (xr)) � (t + qi+1)/2, which contradicts that (ζ+

i , ζ −
i )

is maximal and a q-rung orthopair fuzzy basis. □

4. Application

4.1. Case Study: Human Trafficking. With a rapid increase
in the population of different continents, including Asia
and Africa, it is unable to stop human trafficking. Many
reasons are behind this, such as poverty, greed for a
handsome job, unemployment, low literacy rate, labor,
and sexual exploitation. Studies show that millions of
people are trapped in this modern slavery, and it is a
dilemma that people do not realize they are getting
trapped due to unawareness. Still, we are unable to get
exact statistics due to unreported cases of human traf-
ficking. An important application is to study human
trafficking in different countries and provide a guess
about a more suitable way or path that the traffickers can
use.

Consider n and m number of countries, say
C1, C2, . . . , Cn􏼈 􏼉 and C1′, C2′, . . . , Cm

′􏼈 􏼉, respectively. *e
traffickers will move fromC1 to any of the otherCi countries.
However, C1 is not connected with other Ci’s directly or the
human trafficking ratio is almost ignorable between them
due to multiple factors. *e traffickers move in groups and
collect their other victims from the countries Cj

′ where
j � 1, 2, . . . , m, to move any one of the countries Ci where
i � 2, 3, . . . , n. If C1 is the starting point, they will definitely
move to any of the otherCi (where i � 2, . . . , n) for their next
station. *e state agencies seek to solve this puzzle used by
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the traffickers for trafficking across different stations. *e
procedure to track their way or path regarding given in-
formation is described in Algorithm 1.

We take some data to find the illegal immigration routes
used by traffickers for human trafficking.*is model is in the
form of directed fuzzy graphs. *e edge between the two

(1) Input:
(i) Consider two finite sets of countries C1, C2, . . . , Cn􏼈 􏼉 and C1′, C2′, . . . , Cm

′􏼈 􏼉, and each Ci and Cj
′ mark a vertex of the graph G.

(ii) Mark all the edges and give the direction between the countries regarding given q-rung orthopair fuzzy information and given
problem, that is, for each 1≤ i≤mn, ai(ζ

+
i , ζ −

i ) represents a directed edge that represents the flow between two countries. *ere is
no edge between any of the Ci’s and also no edge between Cj’s.

(2) Calculate the score function S􏽥q(ai) � (1/2)(1 + (ζ+
i )q − (ζ −

i )q).
(3) Find all the edge sets of length mn − 1 and remove all the cycles of length mn − 1.
(4) Find B � Xl � aik

􏽮 􏽯
m+n− 1
k�1 |Xl ismaximal independent􏼚 􏼛, where 1≤ i≤mn and l � 1, 2, . . . , nmmn.

(5) Determine B′ by removing all Xl from B such that Xl’s are not spanning paths (the path runs through each vertex of the graph
exactly once).

(6) Reduce the set B′ to B″ by removing all the spanning paths from B′ which are not the cases according to the directions given in the
data.

(7) Compute Ti � 􏽐 S􏽥q(aik
)􏼚 􏼛

n− 1

k�1
􏼨 􏼩 where each aik

􏽮 􏽯
n− 1
k�1 ∈ B″.

(8) Find max(Ti).
Output: in the last step, the heaviest path will help us to take suitable measures according to flow of human trafficking given in

the data.

ALGORITHM 1: Selection of the heaviest path.

Table 1: 3-Rung orthopair fuzzy information of human trafficking between regions from Figure 1.

Serial no. Connections ai(ξ
+
i , ξ−

i ) S􏽥3
(ζ+

(x), ζ −
(x))

1 V3⟶ V1 (0.33, 0.04) 0.6796
2 V3⟶ V2 (0.25, 0.05) 0.5077
3 V4⟶ V1 (0.26, 0.5) 0.4462
4 V2⟶ V4 (0.13, 0.02) 0.5010
5 V1⟶ V5 (0.04, 0.1) 0.4995
6 V5⟶ V2 (0.8, 0.03) 0.7559
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Figure 1: q-Rung orthopair fuzzy graph representation of human trafficking data.
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countries is represented by the q-rung fuzzy information.
*e membership part shows the ratio of human trafficking
from one country to another. *e non-membership part
shows parameters of measurements taken by the concerned
governments to stop human trafficking (government re-
sponse action to reduce flow). We use the data from the
model given by Mordeson and Mathew [45]. *e data of
illegal human flow between different regions are given in
Table 1 [45]. In this study, we consider five regions: the
Middle East (V1), West Central Europe (V2), East Asia and
Pacific (V3), West Southern Europe (V3), North America
(V4), and Central America (V5). V � V1, V2, V3, V4, V5􏼈 􏼉

and E � a1, a2, a3, a4, a5, a6􏼈 􏼉 represent the set of vertices
and directed edges of graph G, respectively (see Figure 1).
We can analyze the flow of human trafficking by these di-
rected edges. Our task is to find a frequently used path by the
traffickers so that relevant governments can take some
measures to stop this abuse. We calculate the score functions
of all the given q-ROF information (see Table 1). To engage
all the five concerned governments, it is easy to see from
Figure 1 that four edges need to pass through all vertices, and
such total possibilities are 15. However, cycles of length four
cannot be the choice while solving such a puzzle. *e
remaining 12 edge sets are maximal independent sets that
can be useful to find the most used path by the traffickers.
We say B, i.e., B � a1, a2, a3, a5􏼈 􏼉,􏼈 a1, a2, a3, a6􏼈 􏼉,

a1, a2, a4, a5􏼈 􏼉, a1, a2, a4, a6􏼈 􏼉, a2, a3, a4, a5􏼈 􏼉, a2, a3, a5, a6􏼈 􏼉,
a2, a3, a4, a6􏼈 􏼉, a2, a4, a5, a6􏼈 􏼉, a1, a3, a4, a5􏼈 􏼉, a1, a3, a5, a6􏼈 􏼉,

a1, a4, a5, a6􏼈 􏼉, a1, a3, a4, a6􏼈 􏼉}. In the next step, the set B

reduces to B′ by removing maximal independent sets which
are not spanning paths, i.e., B′ � a1, a2, a3, a6􏼈 􏼉,

a1, a2, a4, a5􏼈 􏼉, a2, a3, a4, a5􏼈 􏼉, a2, a3, a5, a6􏼈 􏼉, a1, a4, a5, a6􏼈 􏼉,

a1, a3, a4, a6􏼈 􏼉}. However, the graph shown in Figure 1 is
directed, so four more maximal independent sets are deleted
due to absurdity in these cases. So, only T1 � a2, a3, a4, a5􏼈 􏼉

and T2 � a1, a4, a5, a6􏼈 􏼉 are the cases. Table 2 shows that
T2 � a1, a4, a5, a6􏼈 􏼉 is the heaviest path with the score
function 2.436. We find that given five countries should
increase their government response action against this ob-
tained path used frequently by the traffickers. *ey should
take some measures to minimize human trafficking.

5. Comparison of Given Model with
Intuitionistic and Pythagorean Fuzzy Models

IFSs and PFSs are known to be the special cases of q-ROFSs.
*e IFS was first introduced by Atanassov [3], and then PFS
was discussed later by Yager [15]. *e constructions of IFSs
and PFSs show the importance of membership and non-
membership functions in various real-life problems. How-
ever, there is a limitation in these models; that is, they fail to
solve decision-making problems having information in

which the sum or sum of the squares of membership and
nonmembership values is greater than 1. To overcome these
issues in more complicated information, q-ROFSs were
introduced by Yager [15]. After introducing vector spaces
and matroids based on PFSs in [43], in this study, we
propose q-ROFVSs and q-ROFMs. *is section provides the
comparative analysis with PFMs and Algorithm 1 discussed

Table 2: Directed spanning paths with the sum of their score functions and weights.

Serial no. Ti � ai􏼈 􏼉 􏽐 S􏽥3
(ai)􏼚 􏼛 Ti

1 a2, a3, a4, a5􏼈 􏼉 0.5077 + 0.4462 + 0.5010 + 0.4995{ } 1.9544
2 a1, a4, a5, a6􏼈 􏼉 0.6796 + 0.5010 + 0.4995 + 0.7559{ } 2.436

Table 3: Fuzzy information of connections between cities and their
score functions (see Figure 2 in [43]).

Serial no. Connections ai(ξ
+
i , ξ−

i ) S􏽥2
S􏽥3

S􏽥4
S􏽥5

1 F⟷ L (0.3, 0.4) 0.465 0.481 0.4912 0.4960
2 F⟷M (0.7, 0.5) 0.62 0.609 0.5888 0.5684
3 M⟷N (0.6, 0.7) 0.435 0.436 0.4447 0.4548
4 N⟷ L (0.8, 0.2) 0.8 0.752 0.7040 0.6636
5 F⟷N (0.6, 0.2) 0.66 0.604 0.5640 0.5387
6 L⟷M (0.5, 0.7) 0.38 0.391 0.4112 0.4315

Table 4: Spanning paths and sum of the score functions of their
entries when q � 2.

Serial no. Ti � ai􏼈 􏼉 􏽐 S􏽥2
(ai)􏼚 􏼛 Ti

1 a1, a2, a3􏼈 􏼉 0.465 + 0.62 + 0.435{ } 1.52
2 a1, a2, a4􏼈 􏼉 0.465 + 0.62 + 0.8{ } 1.885
3 a1, a3, a4􏼈 􏼉 0.465 + 0.435 + 0.8{ } 1.7
4 a1, a3, a5􏼈 􏼉 0.465 + 0.435 + 0.66{ } 1.56
5 a1, a3, a6􏼈 􏼉 0.465 + 0.435 + 0.38{ } 1.28
6 a1, a5, a6􏼈 􏼉 0.465 + 0.66 + 0.38{ } 1.505
7 a2, a3, a4􏼈 􏼉 0.62 + 0.435 + 0.8{ } 1.855
8 a2, a4, a5􏼈 􏼉 0.62 + 0.8 + 0.66{ } 2.08
9 a2, a4, a6􏼈 􏼉 0.62 + 0.8 + 0.38{ } 1.8
10 a2, a5, a6􏼈 􏼉 0.62 + 0.66 + 0.38{ } 1.66
11 a3, a5, a6􏼈 􏼉 0.435 + 0.66 + 0.38{ } 1.475
12 a4, a5, a6􏼈 􏼉 0.8 + 0.66 + 0.38{ } 1.84

Table 5: Spanning paths and sum of the score functions of their
entries when q � 3.

Serial no. Ti � ai􏼈 􏼉 􏽐 S􏽥2
(ai)􏼚 􏼛 Ti

1 a1, a2, a3􏼈 􏼉 0.481 + 0.609 + 0.436{ } 1.526
2 a1, a2, a4􏼈 􏼉 0.481 + 0.609 + 0.752{ } 1.842
3 a1, a3, a4􏼈 􏼉 0.481 + 0.436 + 0.752{ } 1.669
4 a1, a3, a5􏼈 􏼉 0.481 + 0.436 + 0.604{ } 1.521
5 a1, a3, a6􏼈 􏼉 0.481 + 0.436 + 0.391{ } 1.308
6 a1, a5, a6􏼈 􏼉 0.481 + 0.604 + 0.391{ } 1.476
7 a2, a3, a4􏼈 􏼉 0.609 + 0.436 + 0.752{ } 1.797
8 a2, a4, a5􏼈 􏼉 0.609 + 0.752 + 0.604{ } 1.965
9 a2, a4, a6􏼈 􏼉 0.609 + 0.752 + 0.391{ } 1.752
10 a2, a5, a6􏼈 􏼉 0.609 + 0.604 + 0.391{ } 1.604
11 a3, a5, a6􏼈 􏼉 0.436 + 0.604 + 0.391{ } 1.431
12 a4, a5, a6􏼈 􏼉 0.752 + 0.604 + 0.391{ } 1.745
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in [43] (Section 4) to prove the efficiency of q-ROFMs and
our proposed Algorithm 1, . It can be seen easily that the
exiting method used to solve an application discussed in [43]
(see Section 4) fails to solve the developed application in this
study (see Section 4). *us, for comparison, we use the
dataset from Application (Section 4, Figure 2) [43].*en, for
q � 2, 3, 4 and q � 5, we compute the score functions (see
Table 3). From Tables 4–7, it can be easily seen that for any q,
the spanning path a1, a3, a6􏼈 􏼉 attains the minimum value.
*us, our proposed technique is more flexible and gener-
alized as it allows the decision makers to choose different
values of q according to the given fuzzy information.
Moreover, we have used directed graphs, spanning trees, and
maximal independent sets to propose a particular algorithm
(Algorithm 1, ) that can be helpful in solving the human
trafficking-related problems.

6. Conclusion

*e study was carried out to enhance the real-life efficiency
of some important models by curbing the issues of imprecise
and vague information. Since the fuzzy sets are known to
have the capacity to provide different models and tools for
handling such information, q-ROFS is more suitable than
IFS and PFS as it increases the space containing acceptable

orthopair by increasing the value of parameter q. In this
study, we have proposed vector spaces based on q-ROFSs
and subsequently named them as q-ROFVSs. We have also
discussed q-ROFVSs with an illustrative numerical example
and developed some relevant results like basis and dimen-
sion. *e q-ROF linearly independent vectors are also dis-
cussed. Furthermore, we have introduced q-ROFMs with
their characteristics. We have extended some of the results
based on IFM and PFM to q-ROFM. We have also discussed
the notions of circuits, basis, and rank function for
q-ROFMs. Finally, we have concluded the proposed work
with a real-life application of decision making regarding
human trafficking between different countries. For that, we
used a directed graph with q-rung orthopair fuzzy infor-
mation and combined it with the concept of maximal in-
dependent sets of edges of the graph to find the heaviest
path. To enhance the capability of the q-ROFMs, we have
provided a comparative analysis with an existing model. We
are of the view that the given study would help the concerned
countries in deciding the action response in a suitable path
for the reduction of human flow.*e major limitation of the
proposed model is that it fails when the objects are evaluated
concerning multiple parameters from more than one expert.
In other words, there is no parametrization tool present in
the initiated approach. Moreover, we are also interested to
broaden our work to (a) q-rung orthopair fuzzy soft mat-
roids, (b) fuzzy N-soft matroids, and (c) spherical fuzzy
N-soft matroids. *is will illustrate more exclusive results
based on the given fuzzy matroids and will be helpful in
figuring out more real-life problems.
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