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Abstract 
 

The goal of this work is not only the search for the solutions of a nonlinear partial differential equation, but 

how to locate and choose a form of solution verifying the nonlinear partial differential equation. In this work, 

we use the probabilities of appearance of the pairs (n, m) linked to iB-functions for which certain terms of the 

range of coefficients equations are grouped together to locate and then determine the solutions of the partial 

differential equation of the KdV type. The pairs (n, m) when identified, indicate with precision the iB-

function which will choose from the start as the solution function which we want to build. The probabilities 

here are essential data to select the analytical sequences of the solutions to be investigated. 
 

 

Keywords: KdV equation; iB-functions; solitary wave; range equations; probabilities of the pairs. 
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1 Introduction  

 
Most often the fundamental difficulty encountered in physical science is that of finding solutions to equations 

which model the dynamics of physical systems. These equations in the majority are nonlinear and even strongly 

nonlinear [1-14]. When the integral method is limited in the resolution, one proceeds by searching for the forced 

solutions [15-25]. But what is even more difficult to do is to make the choices of the solution function to 

introduce into the considered equation. 

 

Within the framework of the resolution of certain types of nonlinear and dispersive partial differential 

equations, we have shown that the use of the iB-function [26-30] was very appropriate in this case. 

 

But this function being multiple, that is to say varying according to three characteristic parameters n ,
 
m  and 

 , choose with precision the values of n ,
 
m  and   so that the iB-function is solution of the nonlinear  

partial differential equation to solve is also difficult. We realized that the most probable solution to verify the 

partial differential equation considered depends on the number of times that the pair  ,n m  considered favors 

the grouping of the terms in the range equation that is a probability of appearance of the pairs  ,n m  in the 

total number of pairs which are at the origin of the regroupings [31]. In this work, we go through the 

probabilities of appearance of the pairs to locate the solutions of modified nonlinear KdV equation type. The 

principle consists in injecting into the modified KdV equation, the solution of the form  , 0 ,n maJ x t   

where 0, , ,a n   and m  are arbitrary constants, x  the independent variable, t  the temporal variable,   and 

then listing all the pairs  ,n m  for which certain terms of the coefficient range equation are grouped together 

and finally identify the most favorable pairs for obtaining solutions. We use the concept of probability in the 

choice of pairs  ,n m   simply because, it makes it possible to avoid the hazardous choices of the forms of 

solutions to be constructed. 

 

We organize this work in three main sections which are: Some notions on the iB-function, results and 

discussion which has for subsections : obtaining the coefficient range equation, the probabilities of the 

possibilities of grouping, the calculations of the coefficients of the terms of the range equation, the search for 

implicit solutions, the deduction of trigonometric solutions  and the conclusion. 

  

2 iB-functions  

 
iB- implicit functions are generally defined by 

 

,

0 0 0

sinh / cosh ,
p p p

m n

n m i i i i i i

i i i

J x x x  
  

     
     

     
                                                                    (1) 
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  represents the implicit form of the function, 

0 0

sinh / cosh
p p

m n

i i i i

i i

x x 
 

   
   
   
   

the explicit form of the function, i  ( 0,1,2,...,i p ) represent the parameters associated with the 

independent variables ix ( 0,1,2,...,i p ) , the pair   2,n m R  indicates the power of the function. More 

precisely, n  is the power of

0

cosh
p

i i

i

x


 
 
 
  and m  the power of

0

sinh
p

i i

i

x


 
 
 
 . This function, as defined 

in relation (1), is also called the iB-functions of several variables and any derivative operation undertaken in this 

case is partial. 

 

The iB-functions of a single variable is  defined by 
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     , sinh / cosh ,m n

n mJ x x x                                                                                              (2) 

 

where  ,n mJ x  represents the implicit form of the function,  represents the parameter associated with the 

independent variable x , the pair   2,n m R indicates the power of the function. 

some important transformations are given by 
 

1, 1 , 1,1,n m n mJ J J  
                                                                                                                               (3) 

 

  2, 2 , 2,2,n m n mJ J J  
                                                                                                                          (4) 

 

, , , ,n p m p n m p pJ J J  
                                                                                                                           (5) 

 

 , , , ,n p m p n m p pJ J J   
                                                                                                                       (6) 

 

 , 2 ,2 , ,n p m p p p n p m pJ J J   
                                                                                                               (7) 

 

, , ,. ,n m n m n n m mJ J J       

 , , ,. ,n m m n m n m nJ J J  
                                                                                                                         (8) 

 

1 1 2 2 1 2 1 2, , , ... , .... ... ,
p p p pm n m n m n m m m n n nJ J J J      

                                                                                  (9) 
 

,

1, 1 1, 1,
n m

n m n m

dJ
m J n J

dx
     

                                                                                                  (10) 

 

and 

 

      2

, , , 1.
m

n m n mJ i x i T x i   
                                                                                           (11) 

 

Some of  properties in its compact forms which facilitate the addition and multiplication of expressions are 

given by the  following formulas 
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By matching y y , we obtain 
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The compact trigonometric formulas which result from formulas (12) and (13) are given by 
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3 Results and Discussion 

 
3.1 Obtaining the Main Range Equation 

 
The modified KdV equation chosen to solve is of the form [32] 

 
2 0,t x x xx xxx xxxxxU U U U U UU U                                                                                 (16)  

 

where   ,
 
 and  are nonlinear coefficients. We assign arbitrary coefficients to the above equation to obtain 

its following generalized form.  

 
2

0 1 2 3 4 0.t x x xx xxx xxxxxn U nU U n U U n UU n U                                                                     (17)  

 

The goal being not only the resolution of the equation,  but also the obtaining of the relations of constraints 

linking the coefficients  0,...,4in i   favoring the widening of the field of analysis of the solutions. In order 

to build solutions in the form 

 

   , 0, ,n mU x t aJ x t                                                                                                              (18)  

 

where a ,   and 0  are arbitrary constants, n  and m  the indicators of the iB-function, we set the change of 

variable 0x t     and Eq. 17  becomes 

 
2 3 3 5

0 0 1 2 3 4 0.n U n U U n U U n UU n U                                                    (19)  

 

With regard to the terms of  Eq.19 , we note that progress in the search for the desired solution requires to 

calculate the successive derivatives which constitute the equation. So the most imposing terms give  

 
2 3 3

3 1,3 1 3 1,3 1,n m n mU U a mJ a nJ                                                                                                (20)  

 

1 2 3,2 3 2 2 1,2 1 3 2 1,2 1 4 2 3,2 3,n m n m n m n mU U A J A J A J A J                                                       (21)  

 

with  
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 2 2

1 1A a m m  ,                                                                                                                           (22) 

 

     2 2 2 2

2 1 1 1 ,A a nm m a m n a nm m     
                                                                 (23)

 
 

 

     2 2 2 2

3 1 1 1 ,A a nm n a nm n a n m                                                                         (24) 

 

and  

 

 2 2

4 1 ,A a n n 
                                                                                                                            (25) 

 

1 2 3,2 3 2 2 1,2 1 3 2 1,2 1 4 2 3,2 3,n m n m n m n mUU B J B J B J B J                                                       (26)  

 

with  

 

  2

1 1 2B a m m m   ,                                                                                                              (27) 

 

      2 2 2 2

2 1 2 1 1 ,B a m m n a m n a nm m      
                                                      (28)

 
  

 

      2 2 2 2

3 1 1 1 2 ,B a nm n a n m a n n m                                                               (29) 

 

and  

 

  2

4 1 2 ,B a n n n  
                                                                                                                (30) 

 

1 5, 5 2 3, 3 3 1, 1 4 1, 1 5 3, 3 6 5, 5 ,n m n m n m n m n m n mU C J C J C J C J C J C J                            (31)  

 

With 

 

    1 1 2 3 4 ,C am m m m m                                                                                        (32)  

 

         

           

2

2

22

1 2 3 4 1 2 3

1 2 1 2 1 2 1 1 2 ,
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3

22 3 2

22 2

1 2 3 2 1 2 1 2 2

1 1 2 1 2 1 1 1 1

1 1 1 1 2 1 ,
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22 2

4

22 3 2

2 22

1 2 1 1 1 1

1 1 1 1 2 1 1 1 2

1 1 2 1 2 1 2 3 2 ,

C am m n n n am n n amn m n

an m n m an m an n m m anm n n m

an m n m an n m an n n m m

        

            

           

                                                                                                                                            

(35)  

 

            

         

22

5

2

1 1 2 1 1 2 1 2 2

1 2 3 1 2 3 4 ,

C anm n n n an m n n an n m n

an n n m an n n n m

           

        
            (36)  

 

and 

 

    6 1 2 3 4 .C an n n n n                                                                                             (37)  

 

The taking into account of the  Eqns. 20-37 in the  Eq.19  leads to the following equation 

 

   

   

   

5 5 5 5

4 1 5, 5 4 2 2, 3 4 3 0 0 1, 1 0 0 4 4 1, 1

5 5 3 3 3 3

4 5 3, 3 4 6 5, 5 2 1 3 1 2 3,2 3 2 2 3 2 2 1,2 1

3 3 3 3

2 3 3 3 2 1,2 1 2 4 3 4 2 3,2 3

n m n m n m n m

n m n m n m n m

n m n m

n C J n C J n C n am J n an n C J

n C J n C J n A n B J n A n B J

n A n B J n A n B J

     

     

   

       

       

   

    

     

     3 3

1 3 1,3 1 1 3 1,3 1 0,n m n mn ma J n na J     

                                                                                                                                              

   (38) 

 

Eq. 38  is the main coefficient range equation to analyze. Thus, the different values of n  and m  favorable to 

the search for solutions will be given in the following sections. 

                                                                                       

3.2 Field of Possible Solutions  

 
We are looking for the values of n  and m  for which certain terms of  Eq. 38  are grouped together. Thus, to 

obtain the values of n  and m  for which certain terms of  Eq.38  regroup, we solve the pairs of equations in n  

and m  such that if 
,i n mJ  and 

,j n mJ  
 (with i j ) are two terms of   Eq.30 and where i and 

j are 

constants, we have simultaneously n n and .m m  
 

In this quest, we count a total of 42 pairs of equations which lead to the determination of the pairs ( ,n m ). Such 

that we have 

 

 , 8, 6, 4, 3, 2, 1, 0,1, 2, 3, 4, 6, 8 .n m                                                                              (39)                                                                                           

 

The combination of the values of n  and m  for which there is a grouping of the terms makes it possible to 

obtain a table of the possibilities of solutions comprising 169 pairs. 
 

The 169 pairs constitute the extended field of pairs for which the search for solutions must be made. But the 

probabilities of appearance of pairs make it possible to determine the most probable pairs and thereby reduce 

the field of possibilities in order to obtain a restricted field of possibilities in which the effective research will be 

carried out. 
 

3.3. Probabilities of Appearance of Pairs ( ,n m ) and Dominant Pairs 

 

On the 42 pairs of equations solved in n  and m , the probabilities of obtaining pairs ( n , m ) for which certain 

terms of the range equation are grouped together are given by 
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 2, 2 7 / 42P     ,
 

 3, 3 2 / 42P     ,
 

 6, 6 2 / 42P     ,
 

 8, 8 1/ 42P     , 

 4,4 4/ 42P  ,  2,2 8/ 42P   ,
 

 0,0 8/ 42P   ,
 

 1,1 2 / 42P   ,
 

 4, 4 2 / 42P     ,
 

 6,6 2 / 42P   ,
 

 1, 1 2 / 42P     ,
 
 3,3 1/ 42P   ,

 
 8,8 1/ 42P   . 

 

 ,P n m  represents the fraction of the number of times that the couple ( ,n m ) appears in the grouping 

possibilities or the probability of obtaining the solution for the pair ( ,n m ). The combination of the values of n  

and m  obtained above, gives the pairs of the main field or extended field of solutions research. With regard to 

the probabilities of appearance of the pairs, we remark that  0,0 8/ 42P   ,
 

 2, 2 7 / 42P    and  2,2 8/ 42P   . Then,  the pairs  ( 0,0 ),( 2, 2  )  and ( 2,2 ) are the dominant 

pairs.  

 

A combination of the values of n  and m  for these dominant pairs forms the restricted field of search for 

solutions. The following table is the narrow field of the search for solutions such that the pairs which  form it 

will examine in detail to see if they lead to solutions. 

 

Table 1. Restricted field of possibilities 

 

 ,n m  2  0  2  

2   2, 2    2,0   2,2  

0   0, 2   0,0   0,2  

2   2, 2   2,0   2,2  

 

 The goal of obtaining the restricted field of pairs aims to verify whether in addition to the dominant pairs, there 

are other pairs which lead to non-trivial solutions. Thus, in the following lines, we will solve  Eq.38 for the 

different values of the above pairs. But before going to the effective resolution, we will determine the values of 

 1,...,4iA i  ,   1,...,4iB i  and  1,...,6iC i   for each pair ( n , m ) of the restricted field. 

 

3.3. Calculation of Coefficients of Terms  

 

For each couple in the restricted field of possibilities, the values of  1,...,4iA i  ,   1,...,4iB i  and 

 1,...,6iC i 
 
are as follows. 

 

 For    , 2, 2 ,n m      we have  

 
2

1 12A a  , 

2

2 28A a  ,
2

3 20A a  ,
2

4 4A a  ,
2

1 24B a  ,
2

2 42B a  ,
2

3 16B a  , 4 0B  , 1 720C a  ,

2 1488C a  , 3 1280C a  , 4 272C a  , 5 0C  , 6 0C  . 

 

 For    , 2,2 ,n m    we have  
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2

1 4A a , 

2

2 20A a ,
2

3 28A a ,
2

4 12A a , 1 0B  ,
2

2 16B a ,
2

3 40B a ,
2

4 24B a , 1 0C  , 2 0C  ,

3 260C a , 4 1232C a , 5 1680C a , 6 720C a .            

                      

 For    , 2,0 ,n m    we have  

1 0A  , 

2 0A  ,
2

3 4A a ,
2

4 12A a , 1 0B  , 2 0B  ,
2

3 16B a ,
2

4 24B a , 1 0C  , 2 0C  , 3 0C  ,

4 272C a , 5 960C a , 6 240C a . 

 

 For    , 2,0 ,n m     we have  

 

1 0A  , 

2 0A  ,
2

3 4A a ,
2

4 4A a  , 1 0B  , 2 0B  ,
2

3 8B a , 4 0B  , 1 0C  , 2 0C  , 3 0C  , 4 32C a 

, 5 4C a , 6 0C  . 

 

 For    , 2, 2 ,n m     we have  

 
2

1 12A a  , 

2

2 4A a ,
2

3 20A a  ,
2

4 12A a ,
2

1 24B a  ,
2

2 8B a ,
2

3 8B a  ,
2

4 24B a , 1 720C a  ,

2 224C a  , 3 32C a  , 4 0C  , 5 240C a , 6 240C a  . 

 

 For    , 2,2 ,n m     we have 

 
2

1 4A a , 

2

2 28A a  ,
2

3 28A a ,
2

4 4A a  , 1 0B  ,
2

2 32B a  ,
2

3 32B a , 4 0B  , 1 0C  , 2 0C  ,

3 464C a , 4 512C a  , 5 0C  , 6 0C  . 

 

 For    , 0, 2 ,n m     we have  

 

2

1 12A a  , 

2

2 4A a  , 3 0A  , 4 0A  ,
2

1 24B a  ,
2

2 16B a  , 3 0B  , 4 0B  , 1 720C a  , 2 400C a  ,

3 280C a  , 4 0C  , 5 0C  , 6 0C  . 

 

 For    , 0,2 ,n m    we have  

 
2

1 4A a , 

2

2 4A a  , 3 0A  , 4 0A  ,
2

1 4B a  , 2 0B  , 3 0B  , 4 0B  , 1 0C  , 2 0C  , 3 24C a , 4 0C  ,

5 0C  , 6 0C  . 
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3.4 Solving the Main Range Equation  
 

When we fix the values of the pairs ( ,n m ), the resulting range equation is the secondary coefficient range 

equation. Thus, we look for the solutions of Eq. 38  for the pairs of the restricted field of possibilities. 
 

For the pairs ( 0,0 ),( 2,2 ), ( 2, 2 ), ( 2,0 ), ( 0, 2 ),( 2,0 ) and  ( 0,2 ) the equation admits trivial 

solutions so that the search for solutions is reduced only for the pairs ( 2, 2  ) and  2,2 . 

 

 Case    , 2, 2n m     

 

Taking into account the pair    , 2, 2n m     in the Eq. 38 we obtain 

 

5 2 3 2 3 3 5 2 3 2 3 3

4 2 3 1 7, 7 4 2 3 1 5, 5

5 2 3 2 3 5 2 3

4 0 0 2 3 3, 3 0 0 4 2 1, 1

720 12 24 2 1488 28 42 2

1280 2 20 16 2 272 4 0,

an a n a n n a J an a n a n n a J

an n a a n a n J n a an a n J

       

      

   

   

             

             

                                                                          

(40) 

Eq. 40 is valid for 0a   if and only if we have 

 

   4 2 2 2

4 2 3 1360 6 12 0,n n n a n a                                                                                    (41) 

 

 4 2 2 2

4 2 3 1744 14 21 0,n n n a n a                                                                                   (42) 

 

 5 3 3

4 0 0 2 3640 10 8 0,n n n n a                                                                                       (43) 

 

and 

 
5 3

0 0 4 5136 2 .n n an                                                                                                                  (44) 

 

From Eq.44  we obtain 

 

 5 3

0 0 4 2 2136 / 2 , 0, 0.a n n n n                                                                                   (45) 

 

The introduction of Eq.45 in Eqns.41-44 permits to obtain the constraint relation 

 

2 340 61 0.n n                                                                                                                                 (46) 

 

The solution in this case is given by 

 

           5 3 5 3

0 0 4 2 2, 2 0 0 4 2 2, 2 0136 / 2 , 136 / 2 .U n n n J U x t n n n J x t            
        
   

 (47) 

 

 Case    , 2,2n m   

 

Taking into account the pair    , 2,2n m   in Eq.38 we obtain 
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5 2 3 5 2 3 2 3

4 0 0 2 1,1 0 0 4 2 3 3,3

2 3 2 3 3 5 2 3 2 3 3

2 3 1 5,5 4 2 3 1 7,7

260 2 4 2 1232 20 16

28 40 2 720 12 24 2 0,

an n a a n J n a an a n a n J

a n a n n a J n a n a n n a J

      

      

           

             

   

 (48) 

 

Eq.48 is valid for 0a   if and only if we have 

 

  5 3

4 0 0 2130 2 0,n n an                                                                                                         (49) 

 
2 2 2

2 3 114 20 0,an an n a                                                                                                        (50) 

 
4 2 2 2

4 2 3 1360 6 12 0,n an an n a                                                                                       (51) 

 

and 

 
5 3 3

0 0 4 2 3616 10 8 0.n n an an                                                                                         (52) 

 

From Eq.52, we obtain 

 5 3

4 0 0 2 2130 / 2 , 0, 0.a n n n n                                                                                   (53) 

 

The introduction of the Eq.53 in Eqns.49-52permits to obtain the constraint relation 

 
2 2

2 2 3 3213 117 240 0.n n n n                                                                                                         (54) 

 

The solution in this case is given by 

 

           5 3 5 3

4 0 0 2 2,2 4 0 0 2 2,2 0130 / 2 , 130 / 2 .U n n n J U x t n n n J x t                 
   

        (55) 

 

3.5 Trigonometric Solutions  

 
One of the great peculiarities of the use of the iB-function is that it facilitates the passage from the hyperbolic 

form to the trigonometric form and vice versa. When we make the correspondences i   and 
0 0i   

with 
2 1i   , we obtain respectively from Eqns. 46,47 the following trigonometric solutions 

 

 

     5 3 2

0 0 4 2 0, 136 / 2 cot ,U x t i n n n an x t        
 

                                               (56) 

 

and 

 

     5 3 2

4 0 0 2 0, 130 / 2 tan .U x t i n n n x t        
 

                                                     (57) 

 

4 Conclusion 

 
The objective of this work was to show how, in the impossibility of using the integral methods to solve a 

nonlinear partial differential equation, one can proceed to choose or know the suitable form of solution. To this 

end, we decided to use this technique to first locate the forms of solutions and then build them by relying on the 

modified partial differential equations of the KdV type. For this purpose, we have considered building a 
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solution of the form  , 0n maJ x t   where 0, , , ,a n m   are real constants to be determined. But the 

fixed values of n  and m  are those which make it possible to indicate with precision the solution functions. It 

is for this that the work to be done first and foremost consisted in determining the values of n  and m  for 

which we suspect the solutions. In this perspective, we have obtained 42 possible  ,n m  pairs forming what 

we have called the extended field of the possibilities of solutions. But of all these pairs, only a few are more 

favorable to obtaining the solutions. These pairs, called dominant pairs, are identified through a high probability 

of presence among the pairs for which certain terms of the coefficient range equation are grouped together. 

 

In the case of this study, we have the pairs  0,0 ,  2, 2   and  2,2  having respectively for probability 

 0,0 8/ 42P  ,  2, 2 7 / 42P     and  2,2 8/ 42P  . These three pairs indicated are those which 

are more favorable to obtaining the solutions. But in order to detect other particular solutions which do not 

appear at first glance, we have combined the values of n  and m  of the dominant pairs to make what we have 

called a restricted field of the possibilities of obtaining solutions. 

 

This allowed to obtain a total of nine  ,n m  pairs that we thoroughly examined in search of possible solutions. 

Of all these analyzes, only the dominant pairs  2, 2   and  2,2  made it possible to have non-trivial 

solutions, the pair  0,0  leading to a trivial solution like  U a  . We have deduced from the implicit 

solutions obtained, the trigonometric solutions by making use of the magnificent properties of iB-functions. 

 

These results obtained confirm our predictions, namely, only the     , 0,0n m   pairs having the greatest 

probabilities of appearance among the pairs of the field of possibilities are the most favorable to obtaining the 

solutions. 

 

We can see that unlike the classical KdV equation which has the third-order dispersion term and admits a pulse-

type solitary wave solution for ( ,n m ) = (2,0), the modified KdV equation has the term of dispersion of order 

six and as treated in this article, admits non-trivial solutions just for pairs (-2, -2) and (2,2), which are solitary 

wave solutions of the kink type. 
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