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Abstract

To improve the robustness of projections of freshwater fish distributions under climate

change, species distribution models (SDMs) were calculated for six fish species in south-

western Germany with different ecological requirements along an upstream-downstream

gradient in a multi-general circulation model (GCM) approach. Using the maximum entropy

(Maxent) algorithm and a high number of occurrence records (N = 4684), species distribu-

tions were projected to future climate conditions derived from 13 GCMs across the most

likely representative carbon pathways (RCP4.5 and 8.5) and two time spans (near future

2050, and far future 2070), resulting in 104 distribution maps per species that were then

used for the statistical analysis of future trends. Climate change is likely to affect the distribu-

tion of four of the six fish species. The potential ranges of salmonids are predicted to decline

by up to 92% (brown trout) and 75% (grayling). In contrast, habitat suitability for perch and

roach is predicted to increase by up to 108% and 53%, respectively. Even when accounting

for broad variation in GCMs and realistic RCPs, these results suggest climate change will

drive a significant redistribution of fish habitat. Salmonid-dominated communities in head-

waters seem more sensitive to climate change than the fish communities of downstream

sections. Because headwaters are a prevailing element of the hydrographic network in

southwestern Germany, such changes may result in large-scale regressions of valuable fish

communities that currently occupy broad geographic niches.

Introduction

Anthropogenic climate change is a major threat challenging the stability of the world’s eco-

nomic and natural systems [1] and has already been identified as a major driver of biodiversity

loss [2], with species across diverse taxonomic groups responding to recent climate alterations

by shifting their ranges or becoming locally extinct [3,4]. Accelerated climate change may even

threaten species that show a high potential for adaption or dispersal, for instance when these

capabilities cannot compensate for the high rate of habitat loss in their current distribution

area [5,6]. This threat is particularly pronounced in freshwater ecosystems [7], that already
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experience massive ongoing biodiversity losses [8–10] through multiple stressors [11,12],

including changing catchment land-use [13], habitat fragmentation by hydropower [14], and

the introduction of invasive non-native species [15,16]. Climate changes are expected to drive

further alterations in water temperature and streamflow that will severely affect the character

and biota of freshwater habitats [17,18].

Freshwater fish provide essential ecosystem services [19] and, with an estimated number of

18,260 species and high levels of endemism, significantly contribute to vertebrate species diver-

sity [20,21]. In many locations, such as southwestern Germany, they are also of primary socio-

economic importance via recreational or commercial fishing of wild stocks [22] or via aquacul-

ture [23]. As ectothermic organisms, the life cycles of fish are closely linked to local climatic

conditions [24] and their zoogeographies are strongly influenced by the range of temperatures

to with they are adapted [25].

Species distribution models (SDMs), also known as ecological niche models or climate

envelope models, represent a primary tool to assess impacts of climate change on fish species

[26,27]. SDMs relate species occurrence data to environmental data and use these relationships

to predict the habitat suitability of any location [28–31]. They have been applied extensively to

project future species distributions under climate change and to guide conservation and man-

agement measures [27,32,33].

A major source of uncertainty in SDM projections arises from the choice of global climate

models (GCMs) and representative carbon pathways (RCPs) [34,35]. A wide variety of GCMs

has been published that make projections for future climates and the choice of GCMs can

introduce a high variance in projections of climate suitability. Between-GCM variability of

SDM projections may even exceed the variability arising from the choice of RCP [35]. Studies

of climate change effects on fishes and other freshwater biota typically include climate projec-

tions from only a few GCMs (cf. [18,26,36,37]). Pre-selection of particular GCMs is valid when

there is evidence that these make the most appropriate representation of variation at a local

geographical scale. However, given the broad range of available GCMs [38], this approach fails

to capture the variability or similitude resulting from including the full range of future climate

projections [39]. Furthermore, and unfortunately, it has become evident that projections cal-

culated from the frequently used low-emission scenario (RCP2.6) that keeps global tempera-

ture rise below 2 ˚C [40,41] are unrealistic and potentially misleading, as humanity remains set

on a path towards mid- to high-emission scenarios (RCP4.5 and 8.5) that leads towards a

global warming of approx. 3 ˚C by the end of the century [42].

The aim of this study was to take the wide variety of GCMs into account to make robust pre-

dictions for the impact of climate change on habitat suitability for a typical assembly of temperate

zone freshwater fishes in southwestern Germany. The underlying hypothesis is that there will be

different reactions to the expected change among the native fish species. SDMs were calculated

for six species with different ecological requirements and distributions along the upstream–

downstream gradient (Table 1) and projected to future climate conditions derived from 13

GCMs across two RCP scenarios (4.5 and 8.5) and two time spans (near future 2050, and far

future 2070). The RCPs used reflect moderate (RCP4.5) and high emission (RCP8.5) scenarios

within the likely trajectory of the Earth system given current global climate policies [5,43,44]. The

results may prove indicative for other geographic regions with comparable habitat conditions.

Methods

Study area, species selection and occurence data

The study was carried out in the federal state of Baden-Württemberg, south-western Germany,

a Central European region with an exceptional diversity of freshwater habitats and fish
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diversity (58 native species, [46]). The state is rich in mid-elevation mountainous areas with

rhithral rivers characterized by swift currents, cool water and high levels of dissolved oxygen

[47], which drain into the catchment areas of the rivers Rhine and Danube (Fig 1). The river

network is largely composed of headwater streams and small rivers but also comprises low-

gradient potamal sections of the Rhine and Danube Rivers.

For the purpose of this study, a set of six fish species with different niche requirements

along the upstream–downstream gradient and a wide spectrum of angling interest was selected

(Table 1). All of selected species can be considered to exhibit equilibrium distribution within

the study area, i.e., they are commonly present in environmentally suitable areas and absent

from unsuitable ones, which is a major assumption for SDMs [30,46], and are present in all

Table 1. Primary habitat, thermal guild, distribution and angling interest of the study species in southwestern Germany.

Species Common name Primary habitat Thermal guild# Distribution## Angling interest
S. trutta brown trout headwater streams (rhithral zone) cold 0,86 high

T. thymallus grayling streams and small rivers (lower rhithral zone) cold 0,37 high

B. barbatula stone loach streams and rivers (rhithral to potamal zone) cool 0,74 none

P. fluviatilis perch potamal rivers and lakes cool 0,58 medium

R. rutilus roach lakes and rivers cool 0,67 medium

S. glanis wels catfish large potamal rivers and lakes warm 0,32 medium

# based on FiCli [45].
## proportion of 10x10 km UTM grid cells where the species is known to occur.

https://doi.org/10.1371/journal.pclm.0000006.t001

Fig 1. Study area (federal state of Baden-Württemberg; southwestern Germany), including elevation gradients, main drainage areas, and

classification of lotic water bodies (Base layer of the map, drainage areas and water bodies are from https://udo.lubw.baden-wuerttemberg.de/

public/).

https://doi.org/10.1371/journal.pclm.0000006.g001
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major catchments, i.e., forecasted range shifts are unlikely to be restricted by major water-

sheds. Brown trout (Salmo trutta Linnaeus 1758) and grayling (Thymallus thymallus Linnaeus

1758) represent stenothermic cold-adapted specialists, while perch (Perca fluviatilis Linnaeus

1758), roach (Rutilus rutilus Linnaeus 1758) and wels catfish (Silurus glanis Linnaeus 1758)

can be considered as eurythermic habitat generalists [48]. To highlight potential climate-

change consequences for recreational fisheries, the assessed species cover a full spectrum of

angling interest, from zero interest in the case of stone loach (Barbatula barbatula Linnaeus

1758), to popular game fish, such as grayling, trout, and perch [49].

Species occurrence data were extracted from the database of the Federal State of Baden-

Württemberg (FiAKa), which contains more than 25,000 georeferenced records of fish occur-

rence. For the purpose of the present study, occurrence points for brown trout (n = 1,645),

grayling (n = 167), stone loach (n = 1,331), perch (n = 345), roach (n = 788) and wels catfish

(n = 408) were extracted for the years 1996 to 2018 (supplementary S1 Data). Most records

arise from electro fishing surveys that were carried out in summer and autumn. To minimize

possible bias from misidentified specimens or erroneous records, only records with secure spe-

cies identification were considered. To prevent pseudo-replication, records that fell within the

same 30 arcsec grid cells (approximately 0.625 km2 in the research area) were entered as one

case in the SDM model.

Niche models

For each of the six study species, potential distribution, i.e., habitat suitability, was assessed

using niche-based SDMs constructed in Maxent (version 3.4.1., [50]). Maxent makes use of a

machine-learning maximum entropy framework to relate environmental conditions at species

occurrence sites to the background environment of the study area, which is obtained by sam-

pling 10,000 random locations. The established relationships are then used to predict habitat

suitability across the landscape. In contrast to most other SDM algorithms, Maxent does not

require a priori assumptions about species absence, thereby allowing for seamless application

to the presence-only dataset used in this study [30,50–52]. Bioclimatic predictors were

obtained from WorldClim (http://www.worldclim.org, [53]), at a resolution of 30 arcsec. Envi-

ronmental data included slope and Strahler order as a measure of stream size. Slope was calcu-

lated from elevation maps using the gdal slope plugin in QGIS (v. 3.4) and Strahler order

numbers were extracted from the European Catchments and Rivers Network System provided

by the European Environment Agency (Ecrins, version 1, Jun. 2012, Denmark). Values range

from 1 (small rhithral headwaters) to 8 (large rivers). Similar sets of candidate predictors have

been previously used in ecological niche models for freshwater fish and macroinvertebrates in

Baden-Württemberg [15,54,55].

The following variables were selected to represent variation in temperature (see supplemen-

tary Table A in S1 Text for justification): mean diurnal range (MDR, bio2), isothermality (ISO,

bio3), temperature seasonality (TS, bio4), mean summer temperature (SuT, bio10), and mean

winter temperature (WiT, bio11). Values for mean summer precipitation (SuP, bio18) and

mean winter precipitation (WiP, bio19) were retained as predictors of precipitation.

The Maxent training and prediction area was limited to grid cells covering lotic surface

waters. To correct for uneven sampling effort across the investigation area, a sampling bias

grid was specified in Maxent, which indicated relative sampling effort based on the number of

sampling sites per cell [30]. For each species, 20 replicate models were fitted with cross-valida-

tion [30,50,55]. For this, occurrence data were randomly split into 20 equal-sized folds, and

models were run leaving out one fold at a time. In each model iteration, the left-out fold of

occurrence data was then used for model evaluation. Using this approach, each occurrence
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point was used at least once for training and evaluation of the models. Final projections were

obtained by averaging the 20 replicate models. Models were run using the default settings,

except for the regularization multiplier, which was set to 1.5 (cf. [54,56]). For perch and wels

catfish, the regularization multiplier was adjusted to 3 to eliminate overfitting and implausible

response curves encountered in preliminary model runs with the multiplier set at 1.5.

For further analysis, the logistic model outputs were converted to binary presence-absence

maps using the ‘10th percentile training presence’ threshold (10P) to assess the ‘core distribu-

tion’ areas with suitable environment for the assessed fish species [30]. In addition, the ‘equate

entropy of thresholded and original distributions’ threshold (EET) was used, which generates

less conservative predictions than the 10P (data for EET are presented as supplementary

Table F in S1 Text).

Distribution projection

To forecast future occurrence probabilities for the six fish species, final models were projected

to future climate conditions derived from 13 GCMs on basis of the CMIP5 data set (supple-

mentary Table B in S1 Text; worldclim.org) across two representative carbon pathways

(RCP4.5 and 8.5) and two time spans (near future, ‘2050’, average for 2041–2060, and far

future, ‘2070’, average for 2061–2080). RCP4.5 and RCP8.5 correspond to ‘moderate’ and

‘high’ emission climate change scenarios, respectively, and were used to cover the most likely

outcomes of future global change [40,57]. The moderate scenario envisages a ‘emissions-

reduction‘ future (RCP4.5) that might be more appropriate if climate mitigation policies are

put into place and tipping points are not reached. The high emission scenario represents cli-

mate change under a ‘fossil fuel intensive’ future with highest changes in temperature and pre-

cipitation (RCP8.5).

This multi-GCM approach resulted in a total of 104 binary distribution maps per species.

Forecasted changes in habitat suitability were subsequently presented either as change in suit-

able area (given as percentage of the total area). Ternary plots were drawn to illustrate the

dynamic changes i.e. loss vs. gain of suitable habitat and potential migrations of fish species

over time. When comparing forecasted habitat suitability between present and future condi-

tions, three potential outcomes can be assumed for each grid cell: 1) ‘stay´ –the cell is predicted

as suitable under present and future conditions, 2) ‘loss´ –the cell is predicted as suitable

under current but not future conditions, and 3) ‘gain´ –the cell is predicted as unsuitable

under current conditions but will probably become suitable in the future. These potential out-

comes were taken as endpoints for triangular plots to visualize the relative contribution of

each process (stay, loss, and gain) to the predicted change in habitat suitability. This was done

for all future predictions, whereby hulls were drawn for each combination of time span and

RCP, connecting the extreme coordinates of the 13 different climate models.

Management and statistical analysis of georeferenced data

Data preparation, analyses and visualizations were performed in QGIS (version 3.10.3) and R

(version 3.6.3 running in Rstudio Version 1.4.1103), while ecological niche modelling was

done using Maxent (version 3.4.0). To assess the accuracy of the Maxent models, the area

under the receiver operating characteristic curve (AUC) is given. AUC values range between

0.5 for random prediction to 1.0 for perfect prediction [30], values below 0.5 are worse than

random guess, and values lower than 0.7 indicate low accuracy of the model, while values

higher than 0.7 represent adequate discrimination capacity [58,59]. In addition, response

curves of the predictor variables were checked for ecologically plausible behavior and signs of

potential overfitting, e.g., random curve behavior. Distribution graphs were drawn with R
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(packages: ggplot2, ggtern). Statistics were calculated with R (packages: emmeans, gtools,

PMCMRplus, stats) and Past (version 4.01, [60]). Effects of the two main factors, i.e. time span

(year) and RCP, on species habitat suitability (percentage of total area predicted as suitable)

and on the median elevation at which the species is expected to be distributed were examined

using least square linear models (ANOVA with Tukey´s HSD post hoc test)

Results

The average SDM outputs for current distributions of the six fish species are shown in Fig 2

and the respective model statistics are summarized in Tables 2 and 3 presenting the average

AUC scores, 10th percentile training presence thresholds, and variable contributions. Presence

probabilities were mostly determined by stream size, followed by temperature and precipita-

tion variables. Individual variable contributions and response curves are summarized by spe-

cies in supplementary (Table C in S1 Text).

Suitable existing habitat for brown trout is predicted almost throughout Baden-Württem-

berg (Figs 2A and 3A), although the predicted core distribution range (based on the 10P

threshold) excludes most of the Upper Rhine plain and low-gradient streams north of the

Black Forest. Under future climatic changes the area of suitable habitat for brown trout is pre-

dicted to decline considerably under both RCP scenarios (F = 109.2, p< 0.001) and time

spans (F = 10.14, p = 0.008). Predicted future projections suggest that less than 15% of cur-

rently suitable area in Baden-Württemberg will remain suitable for trout populations

(Table 2), and only 1–2% of new habitat will be gained. It appears that future brown trout habi-

tat will be concentrated in the elevated mountainous regions of the Black Forrest, Swabian

Jura and prealpine regions of the Allgäu, indicated by an upwards shift of the average elevation

range of more than 100 m (current: 489 m to future median 645–668 m, see Table D and E in

S1 Text, Figs B and C in S1 Text for details). Ternary plots indicate severe range reductions: all

but one model showed habitat loss under future conditions (Fig 4A).

Under current conditions, suitable habitat for grayling in Baden-Württemberg is mostly

predicted in lowland river stretches (Fig 2B). With ongoing climate changes this area of suit-

able habitat will decline significantly by 2070 (6.5–7.6% reduction, F = 16.31, p<0.001), with

minimal predicted area gain (0.1%, Table 2). Most climatic models indicate a decrease in dis-

tribution area or describe a stable situation with little changes (Fig 4B).

The habitat suitability model for the stone loach estimates 43.6% suitable habitat of Baden-

Württembergs grid cells covering lotic surface waters under current climatic conditions (Fig

2C). Notwithstanding a trend towards range reduction, the models predict no significant

changes resulting from future conditions (year: F2,24 = 2.7, p = 0.08; RCP: F1,12 = 0.3, p = 0.58).

This is due to the wide variation in predictions based on the RCP8.5 scenario (red shaded area,

Fig 3C) in which loach are predicted to experience both habitat loss (9.4–19.8%) and habitat

gain (2050: 5.1–5.3%, Table 2). These dynamics are also visualized in the ternary plot, where

values range from the remain/increase section (mostly RCP4.5 models, Fig 4C) to the extreme

habitat decrease section on the opposite side (mostly RCP8.5 models).

The model for perch predicts 42.7% suitable habitat in Baden-Württemberg and reflects the

species wide distribution in particular along the Rhine valley and in northern and southern

low mountain ranges (Odenwald, Allgäu). Irrespective of the underlying RCP, perch habitat is

likely to increase vastly (28.4–38.6% near future 2050, 40.7–46.3% in the far future, Table 2)

under predicted future conditions, a prediction reinforced by colored areas in the ‘increase’

section of the ternary plot (Fig 4D).

Roach habitat in Baden-Württemberg is currently limited to northern and western lowland

river stretches (median elevation of 330 m) and is very similar to the distribution of perch,
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Fig 2. Predicted habitat suitability for six fish species in southwestern Germany under current climatic conditions (a: Brown

trout, b: Grayling, c: Stone loach, d: European perch, e: Common roach, and f: Wels catfish). Areas with high suitability are

colored blue (10th percentile cut off), habitats with moderate conditions are green (EET), unsuitable areas are gray. (Base layer of the

map is from https://udo.lubw.baden-wuerttemberg.de/public/).

https://doi.org/10.1371/journal.pclm.0000006.g002
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with higher elevations being not suitable (Fig 2E). Under expected climatic changes, roach

habitat will increase significantly (year: F2,24 = 6.17, p = 0.007; RCP: F1,12 = 6.26, p = 0.028),

with a wide range of variation in the model predictions (Table 2, e.g., habitat gain ranges from

0.3–32.8% interquartile range for 2050 RCP8.5; Fig 3E, shaded area). Hence while most future

distribution models for roach show stable distributions (‘stay’), others predict extreme

increases or declines (Fig 4E).

Current wels catfish habitat is limited to lowland regions of Baden-Württemberg in areas

similar to those occupied by roach and perch but more restricted to big streams and their

major tributaries (Fig 2F and Table C in S1 Text: 61% importance by stream size, Table D in

S1 Text: median elevation of 277 m). This distribution is unlikely to undergo significant

changes under climate change (year: F2,24 = 3.11, p = 0.06; RCP: F1,12 = 0.91, p = 0.36). In detail

wels catfish are set to lose very little of their current areas (0.1–0.1% range of means, 0–13.6%

Table 2. Species distribution model parameters for six fish species in southwestern Germany and predicted habitat suitability (median and interquartile range,

25%-75%, 10th percentile cut off) under current and future climatic conditions derived from 13 different climate models (see Table B in S1 Text for details) across

two RCP pathways.

Suitable range [%]

Species Mean AUC Current 2050 2070

RCP4.5 RCP8.5 RCP4.5 RCP8.5

Stable Loss Gain Stable Loss Gain Stable Loss Gain Stable Loss Gain

S. trutta 0.62

(±0.03)

79.7

(79.5–

80.0)

15.0

(10.1–

26.8)

64.7

(52.9–

69.6)

2.2

(1.7–3.3)

11.3

(2.7–18.6)

68.5

(61.1–

77.0)

2.4

(0.3–2.8)

8.9

(2.5–13.3)

70.9

(66.5–

77.3)

1.9

(0.9–2.5)

5.3

(1.0–11.5)

74.4

(68.3–

78.7)

1.4

(0.1–1.9)

T. thymallus 0.88

(±0.04)

10.0

(9.4–10.2)

6.1

(4.9–7.5)

3.8

(2.4–4.9)

0.5

(0.2–0.8)

5.3

(3.9–7.0)

4.6

(2.8–5.9)

0.5

(0.1–0.6)

3.3

(1.5–6.3)

6.5

(3.6–8.4)

0.1

(0.0–1.0)

2.2

(0.3–4.6)

7.6

(5.2–9.5)

0.1

(0.0–0.4)

B. barbatula 0.71

(±0.03)

43.6

(43.2–

44.0)

34.3

(24.6–

39.6)

9.4

(4.1–19.1)

5.3

(1.0–14.9)

30.7

(19.2–

41.0)

13.0

(2.7–24.5)

5.1

(0.7–17.8)

34.3

(23.1–

38.4)

9.4

(5.3–20.6)

3.9

(0.5–13.0)

23.9

(17.9–

39.4)

19.8

(4.2–25.8)

0.4

(0.2–12.7)

P. fluviatilis 0.83

(±0.04)

42.7

(42.0–

43.4)

42.5

(38.8–

42.6)

0.2

(0.1–3.9)

28.4

(12.2–

41.3)

42.1

(38.0–

42.6)

0.6

(0.0–4.6)

38.6

(14.3–

48.6)

42.5

(34.0–

42.6)

0.1

(0.0–8.7)

40.7

(10.3–

47.8)

42.6

(39.5–

42.7)

0.1

(0.0–3.2)

46.3

(22.9–

53.2)

R. rutilus 0.79

(±0.04)

49.4

(49.2–

49.5)

45.8

(41.2–

46.3)

3.6

(3.1–8.2)

15.1

(6.5–19.1)

46.0

(35.6–

48.4)

3.4

(0.9–13.8)

19.9

(0.3–32.8)

47.0

(40.7–

49.3)

2.4

(0.1–8.7)

25.1

(3.2–41.1)

47.7

(38.9–

49.3)

1.7

(0.0–10.5)

28.0

(1.1–48.3)

S. glanis 0.83

(±0.04)

26.0

(25.0–27.2

25.7

(21.5–

25.7)

0.1

(0.1–4.3)

32.1

(2.7–37.6)

25.7

(12.7–

25.8)

0.1

(0.0–13.1)

34.2

(0.2–39.8)

25.7

(14.4–

25.8)

0.1

(0.0–11.4)

24.4

(0.2–43.2)

25.7

(12.2–

25.8)

0.1

(0.0–13.6)

42.4

(0.2–50.5)

Values for habitat suitability correspond to the percentage of total area predicted as suitable. Maxent AUC for test data is given as mean ± SD.

https://doi.org/10.1371/journal.pclm.0000006.t002

Table 3. Effects of time (year) and RCP on habitat suitability (percentage of area predicted as suitable) for six different fish species in southwestern Germany (esti-

mated marginal means/least square means).

ANOVA Least square means
year RCP Year:RCP 2000–2050 2000–2070 2050–2070

Sum Sq F value P value Sum Sq F value P value Sum Sq F value P value P value P value P value
S. trutta 251.59 109.2 <0.001 5.14 10.14 0.008 2.57 5.32 0.012 <0.001 <0.001 0.013

T. thymallus 31.88 16.31 <0.001 2.02 10.89 0.006 2.11 9.08 0.001 0.056 <0.001 0.009

B. barbatula 5.13 2.74 0.085 0.06 0.32 0.582 0.06 0.32 0.728 0.326 0.073 0.674

P. fluviatilis 45.99 13.93 <0.001 1.35 4.15 0.064 0.71 2.02 0.154 0.003 <0.001 0.371

R. rutilus 25.05 6.17 0.007 2.41 6.26 0.028 1.47 4.82 0.017 0.330 0.005 0.112

S. glanis 31.10 3.11 0.063 0.29 0.91 0.36 0.20 0.84 0.444 0.157 0.069 0.903

Significant effects are highlighted in bold.

https://doi.org/10.1371/journal.pclm.0000006.t003
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Fig 3. Predicted changes in suitable habitat area for six fish species in southwestern Germany under anticipated climate change (a: Brown trout,

b: Grayling, c: Stone loach, d: European perch, e: Common roach, and f: Wels catfish). Data is presented for 13 different climate change models

(10th percentile cut off; see Table B in S1 Text for details) as median (points, dashed line) and most likely variation (interquartile range: 25–75

interquartile range % percentiles, shaded area) for different RCP pathways (green: RCP4.5 and red: RCP8.5). Significant changes (One-Way ANOVA

with Tukey HSD) between time spans (capital letters, bold) and RCP pathways (lowercase letters, italic) are highlighted.

https://doi.org/10.1371/journal.pclm.0000006.g003
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Fig 4. Triangle plots of predicted distribution changes between current conditions and predicted future conditions (a: Brown trout, b:

Grayling, c: Stone loach, d: European perch, e: Common roach, and f: Wels catfish). Suitable habitat range shifts are displayed for “stay”

(suitable under current and future conditions), “loss” (current: Suitable, future: Not suitable) and “gain” (current: Not suitable, future:

Suitable) (see Fig A in S1 Text for explanation). Symbols represent distribution changes between current conditions and individual future

predictions (13 different climatic models across two RCP scenarios and years; see Table B in S1 Text for details); hulls were drawn for each

year-RCP combination connecting the extreme coordinates of the predicted changes.

https://doi.org/10.1371/journal.pclm.0000006.g004
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IQR loss, Table 3), but appear to gain some areas that are currently not suitable for their distri-

bution (24.4–42.4% range of mean, 0.2–50.5% IQR win). Under severe RCP8.5 scenarios wels

catfish appear to gain more habitat than under the moderate RCP4.5 (Table 2), indicated by

the line plot showing this indifferent pattern of habitat shift under far future conditions (2070,

Fig 4F). A few models predict a decrease in distribution area (right side, Fig 4F), whereas most

model runs showed future distribution increase with marginal losses (left side, Fig 4F).

Discussion

Niche-based SDMs are a powerful tool in understanding species’ environmental niches and

potential ranges [61,62] and are widely used in freshwater ecology to relate fish community

structure to environment [31,63,64] and to predict future distributions under changing condi-

tions [18,37,53]. In southwestern Germany, SDMs were recently used to underpin risk assess-

ment and conservation planning for endangered freshwater crayfish [15,54] and to assess the

risk of fish disease spread under projected climate change in a single-GCM approach [55].

This study went beyond previous SDM applications by integrating projections from 13 differ-

ent GCMs across two realistic RCP scenarios in an effort to account for the inherent variability

of climate models and to arrive at robust predictions [35,36]. This multi-GCM approach is

likely to better capture trajectories of future species distributions than SDM projections based

on single or only few GCMs [35].

The developed SDMs were able to capture the known ranges of all of the six fish species and

the response curves exhibited ecologically plausible behavior (Figs C-H in S1 Text) in accor-

dance with existing knowledge of the modelled species and landscapes [46,48]. The AUC val-

ues of the SDMs also indicate good model performance (AUC 0.7–0.9 for all species except

brown trout; (cf. [65]). The lower AUC score of the SDM for brown trout (0.6) is probably

related to its exceptionally wide distribution in the study area, since great niche breadth is

known to decrease AUC [54,62]. The set of predictor variables might also miss environmental

variables important to the occurrence of brown trout, although this is deemed unlikely based

on the well-known environmental requirements of this species [46,47]. Notwithstanding the

low AUC score, the brown trout model shows plausible behavior and realistic predictions, con-

sistent with understanding of the species’ biology [48,66,67]. The presented models are there-

fore considered indicative of future fish distributions under anticipated climate change.

Climate change effects on fish distributions

Anticipated climate change, as assessed by the 13 GCMs, is likely to affect the distribution area

of four out of the six modelled fish species. Specifically, the potential ranges of grayling and

brown trout are predicted to decline over time (up to 75 and 92% under RCP8.5, far future con-

ditions), whereas habitat suitability for roach and perch is predicted to increase (up to 53 and

108% respectively). The potential distribution area of wels catfish and stone loach meanwhile

are not predicted to undergo significant change, although the extent of suitable habitat for the

former is predicted to increase in most climate models (increases of up to 163%). These find-

ings are generally consistent with previous research predicting climate ‘losers´ or ‘winners´ and

those less sensitive to climate change [18,26,68].

The cold-adapted stenothermic such as brown trout and grayling are consistently predicted

to be losers to climate change, while perch and roach, both eurythermic habitat generalists, are

predicted to be winner. This distinct pattern provisionally supports the use of species-level

traits for quick assessment of the climate-change susceptibility of fishes (cf. [69]) and hints at

differential susceptibility of fish communities along the upstream–downstream gradient under

climate-change. Salmonid-dominated communities in the upper stream reaches seem
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particularly sensitive when compared to the cyprinid-dominated fish communities in down-

stream sections (cf. [26,70]). The hydrographic network of Baden-Württemberg is dominated

by headwaters and small rivers, which are highly sensitive to climate change. This may result

in large-scale regression of fish species that are currently occupying broad geographic niches,

exemplified by the brown trout in this study.

The predicted changes in habitat suitability in face of expected global warming result from

a composite of loss areas and gain areas, and areas that maintain suitability over time (stay

areas). Considering the relative contributions of these processes can help to identify range

shifts that may go unnoticed if only the combined picture is considered. For instance, about

10% of the potential future range of stone loach is associated with gains that are outweighed by

losses. This indicates that the predicted range of loach is geographically shifting over time,

despite no significant overall quantitative change in suitable habitat is predicted for the study

area. Notably, brown trout is also predicted to gain habitat in high-elevation areas as part of an

uphill shift; but this gain cannot even remotely compensate for the losses of suitable habitat

predicted in lower-elevation areas. With regard to potential gain areas, it is also important to

note that the predicted changes in habitat suitability will probably occur faster than fish popu-

lations can adapt and disperse [18]. Furthermore, potential gain areas may not be accessible to

fish because of artificial migration barriers, such as river dams, or natural barriers to dispersal,

such as catchment boundaries or unfavorable hydromorphological conditions. Predicted gain

areas should therefore be interpreted with care, as opposed to loss areas, which are likely to

manifest directly.

The magnitude of forecasted climate change, i.e. the underlying RCP scenario, had a dis-

tinct effect on the potential ranges of the two salmonid species and of roach, with stronger pre-

dicted range loss (salmonids) or gain (roach) occurring under the high emission scenario.

This finding re-emphasizes the notably high sensitivity of salmonids to climate-change effects

(cf. [26,55,70–72]) and the fact that detrimental effects of global warming scale with the magni-

tude of climate change [1,73]. In this regard, it is important to highlight that this study con-

trasts two realistic emission scenarios rather than best- and worst-case scenarios, which

typically span a wider spectrum of potential future climates. The scenarios used in this study

fall within the likely trajectory already set by humanity [73–75] and findings shown here indi-

cate that the moderate emission scenario (RCP4.5) holds considerably less drastic implications

for fish.

Regardless of the scenarios used, cold water adapted species such as trout and grayling will

decline in their distribution in the future, with expected consequences for freshwater habi-

tats, their conversation purposes and value for fisheries. Warm-water adapted or generalist

species like wels or perch on the other hand can benefit from anticipated changes, provided

that potential new habitat is also accessible to the fish. In addition to range expansion, these

species may further increase in abundance within their range, as currently reported for wels

[46,68].

Implications for species management

Anticipated climate change will inevitably impact fish communities (this study, [6]) and

exacerbate existing stressors [11,14,16,55,76], with cascading effects on ecosystem function-

ing and services like shifts in body size and biomass fluxes, decoupling of food web interac-

tions or even partial collapses of food webs when predators decline [77–80]. Besides

functioning, ecosystem services will as well face climate induced changes. For instance, a

decline in salmonid fisheries under future climate change, as forecasted in this study, is likely

to carry negative economic implications (cf. [81,82]), even if future angling interests shift
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towards climate-change winners, such as perch or wels catfish (this study, [26,68]). Further-

more, current conservation policies have virtually no experience with wide range shifts of

fish communities and their ecosystems. Finally, species may venture into new habitats where

they might have to establish new inter-species relationships that may become competitive or

mutualistic, parasitic or pathogenic. This may require a paradigm shift in how to deal with

migrations of species to localities where these were rarely seen and the way we think about

protective areas [83–85].

Efforts to preserve functioning and ecosystem services of freshwater ecosystems must there-

fore account for climate change, and mitigation actions to restore and increase the resilience

of fish habitats to higher ambient temperatures and extreme weather effects are urgently

needed [86–88]. Salmonid fish, for example, would greatly benefit from shading of headwaters

by fostering native riparian woods [89,90], restauration of habitat connectivity [88,91–93] and

preservation of cold-water refugia [94,95], in addition to measures that secure natural surface

water runoffs, in particular during drought conditions [86,88]. Finally, and above all, limiting

global warming, as pledged under the Paris Agreement [96], is imperative in maintaining

native fish communities and their ecosystem services, especially since ecosystem disruption

may occur abruptly [97].

Supporting information

S1 Data. Fish occurrence points used for SDM analysis.

(CSV)

S1 Text. Tables (A-F) and Figs (A-H) with additional information for the study. Table A:

Predictor variables of fish species presence probability used in the species distribution models,

including justification for inclusion and data source. The range and average values of under

current climate conditions are given for study area. Table B: Thirteen different climate change

data sets were used to generate future predictions for fish species. All data were obtained from

the Worldclim.org database website. Table C: Estimates of relative contributions of the envi-

ronmental variables to the Maxent model for different fish species under current conditions in

Baden-Württemberg. Table D: Elevation range of Maxent model for fish species under current

and future conditions in Baden-Württemberg (average median and interquartile range, 25%-

75%, 10th percentile cut off). Table E: Analysis of Variance Model with Post Hoc Test (esti-

mated marginal means/least square means) for elevation distribution of six different fish spe-

cies in southwestern Germany under current and future climatic conditions. Significant

differences to current distribution are highlighted in bold. Table F: Species distribution model

parameters for fish species in Baden-Württemberg. Suitable range (median and interquartile

range, 25%-75%, ‘equate entropy of thresholded and original distributions threshold’ cut off)

is given for current and future climatic conditions for 13 different models (see Table B in S1

Text for details), two timespans and two different RCP pathways. The values correspond to

percentage of total assessed area. Maxent AUC for training and test are given as mean ± SD.

[Compare with Table 2 for 10th percentile cut off values for more conservative/restrict future

estimations]. Fig A: Triangle plot of theoretical species distribution changes between current

conditions and predicted future conditions. X axis (“new habitat”) illustrates a gain of new

suitable habitat, y axis (“old habitat”) represents percentage of area remaining suitable for the

species whereas z-axis (“lost habitat”) highlights a reduction in suitable habitat. The population

“remains” in its original space, when more than 60% of habitat stays suitable. If the portion of

lost habitat is greater than the portion gained the overall population will “decrease” (loss>gain,

right sector), if vice versa the population will “increase” (gain>loss, left sector). If the propor-

tions of loss and gain are almost equal, a species migration will occur (“migrate”, lower middle
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sector). Fig B: Elevation range of Maxent models for fish species (A: Trout, B: Grayling, C:

Stone loach, D: Perch, E: Roach, F: Catfish) under current (solid black line) and future condi-

tions in Baden-Württemberg (light blue 2050, RCP 4.5; blue: 2050, RCP 8.5; orange: 2070 4.5,

red: 2070 RCP8.5). Gray bars represent the elevation range of the study area in southern Ger-

many. Fig C: Species occurrence and distribution map of brown trout (Salmo trutta) under

current and future climatic conditions in the study area of Baden-Württemberg. Species

occurrence (blue points) results in a Maxent binary map under current conditions (10P cut

off, blue area), future graphs display gradient maps for 13 different climatic models for near

(2050) and far future (2070) under two different RCP scenarios. White area contains no sur-

face water bodies; grey indicates unsuitable habitat speciconditions. The more models predict

suitability, the darker the colors (Base layer of the map is from https://udo.lubw.baden-

wuerttemberg.de/public/). Fig D: Species occurrence and distribution map of grayling (Thy-
mallus thymallus) under current and future climatic conditions in the study area of Baden-

Württemberg. Species occurrence (blue points) results in a Maxent binary map under current

conditions (10P cut off, blue area), future graphs display gradient maps for 13 different cli-

matic models for near (2050) and far future (2070) under two different RCP scenarios. White

area contains no surface water bodies; grey indicates unsuitable habitat conditions. The more

models predict suitability, the darker the colors (Base layer of the map is from https://udo.

lubw.baden-wuerttemberg.de/public/). Fig E: Species occurrence and distribution map of

stone loach (Barbatula barbatula) under current and future climatic conditions in the study

area of Baden-Württemberg. Species occurrence (blue points) results in a Maxent binary map

under current conditions (10P cut off, blue area), future graphs display gradient maps for 13

different climatic models for near (2050) and far future (2070) under two different RCP sce-

narios. White area contains no surface water bodies; grey indicates unsuitable habitat condi-

tions. The more models predict suitability, the darker the colors (Base layer of the map is from

https://udo.lubw.baden-wuerttemberg.de/public/). Fig F: Species occurrence and distribution

map of perch (Perca fluviatilis) under current and future climatic conditions in the study area

of Baden-Württemberg. Species occurrence (blue points) results in a Maxent binary map

under current conditions (10P cut off, blue area), future graphs display gradient maps for 13

different climatic models for near (2050) and far future (2070) under two different RCP sce-

narios. White area contains no surface water bodies; grey indicates unsuitable habitat condi-

tions. The more models predict suitability, the darker the colors (Base layer of the map is from

https://udo.lubw.baden-wuerttemberg.de/public/). Fig G: Species occurrence and distribution

map of roach (Rutilus rutilus) under current and future climatic conditions in the study area

of Baden-Württemberg. Species occurrence (blue points) results in a Maxent binary map

under current conditions (10P cut off, blue area), future graphs display gradient maps for 13

different climatic models for near (2050) and far future (2070) under two different RCP sce-

narios. White area contains no surface water bodies; grey indicates unsuitable habitat condi-

tions. The more models predict suitability, the darker the colors (Base layer of the map is from

https://udo.lubw.baden-wuerttemberg.de/public/). Fig H: Species occurrence and distribution

map of catfish (Silurus glanis) under current and future climatic conditions in the study area of

Baden-Württemberg. Species occurrence (blue points) results in a Maxent binary map under

current conditions (10P cut off, blue area), future graphs display gradient maps for 13 different

climatic models (10P cut off) for near (2050) and far future (2070) under two different RCP

scenarios. White area contains no surface water bodies; grey indicates unsuitable habitat con-

ditions. The more models predict suitability, the darker the colors (Base layer of the map is

from https://udo.lubw.baden-wuerttemberg.de/public/).

(DOCX)
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