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Abstract

The spin properties of merging black holes observed with gravitational waves can offer novel information about
the origin of these systems. The magnitudes and orientations of black hole spins offer a record of binaries’
evolutionary history, encoding information about massive stellar evolution and the astrophysical environments in
which binary black holes are assembled. Recent analyses of the binary black hole population have yielded
conflicting portraits of the black hole spin distribution. Some works suggest that black hole spins are small but
nonzero and exhibit a wide range of misalignment angles relative to binaries’ orbital angular momenta. Other
works conclude that the majority of black holes are nonspinning while the remainder are rapidly rotating and
primarily aligned with their orbits. We revisit these conflicting conclusions, employing a variety of complementary
methods to measure the distribution of spin magnitudes and orientations among binary black hole mergers. We find
that the existence of a subpopulation of black holes with vanishing spins is not required by current data. Should
such a subpopulation exist, we conclude that it must contain 60% of binaries. Additionally, we find evidence for
significant spin–orbit misalignment among the binary black hole population, with some systems exhibiting
misalignment angles greater than 90°, and see no evidence for an approximately spin-aligned subpopulation.

Unified Astronomy Thesaurus concepts: Gravitational wave astronomy (675); LIGO (920); Astronomy data
analysis (1858); Stellar mass black holes (1611); Compact binary stars (283)

1. Introduction

The spins of black holes in merging binaries detected with
gravitational waves promise to illuminate open questions in
massive stellar evolution and compact binary formation. The
orientations of component black hole spins may differentiate
between binaries formed via isolated stellar evolution and those
formed dynamically in clusters or the disks of active galactic
nuclei, and additionally offer a means of measuring natal kicks
that black holes receive upon their formation (Rodriguez et al.
2016; Vitale et al. 2017; Farr et al. 2017; Gerosa & Berti 2017;
O’Shaughnessy et al. 2017; Gerosa et al. 2018; Liu & Lai 2018;
Wysocki et al. 2018; Fragione & Kocsis 2020; McKernan et al.
2020; Callister et al. 2021a; Abbott et al. 2021a; Steinle &
Kesden 2021). Spin magnitudes, meanwhile, are determined by
poorly understood angular momentum processes operating in
stellar cores and may be further affected by binary processes such
as tidal torques or mass transfer (Qin et al. 2018; Bavera et al.
2020, 2021; Steinle & Kesden 2021; Zevin & Bavera 2022).
Black holes with large spin magnitudes might also point to
hierarchical assembly in dense environments, involving comp-
onent black holes that are themselves the products of previous
mergers (Gerosa & Berti 2017; Rodriguez et al. 2019; Kimball
et al. 2020, 2021; Doctor et al. 2020; Gerosa & Fishbach 2021).

Despite the large astrophysical interest, spin measurements are
hampered by the fact that spin dynamics have a relatively weak
imprint on the gravitational-wave signal. The main effect of
spins (anti)parallel to the Newtonian orbital angular momentum
is to (speed up) slow down the binary inspiral and merger. Spins

in the plane of the orbit, on the other hand, give rise to
precession that modulates the amplitude and phase of emitted
gravitational waves. Even with informative measurements of
these effects, however, it is not straightforward to constrain all
six spin degrees of freedom independently.
Recent work (Abbott et al. 2021a; Galaudage et al. 2021;

Roulet et al. 2021) has yielded conflicting conclusions
regarding the distribution of spins among the binary black
hole population witnessed by Advanced LIGO (Aasi et al.
2015) and Virgo (Acernese et al. 2015). Specifically:

1. Do binary black holes have small but nonzero spins that
may be misaligned significantly with the Newtonian
orbital angular momentum, i.e., with spin–orbit misalign-
ments >90°?

2. Or, do a majority of binaries have spins that are
identically zero or, if nonzero, preferentially aligned with
the Newtonian orbital angular momentum, i.e., with
misalignments <90°?

These questions highlight the subtleties and difficulties
inherent in statistical analysis of weakly informative measure-
ments. This debate also hinges on a variety of technical
difficulties related to hierarchical inference of narrow popula-
tion features using discretely sampled data.
The two possibilities listed above carry considerably different

astrophysical implications for the assembly and evolution of
binary black hole mergers. Systems arising from isolated binary
evolution are traditionally expected to have spins preferentially
parallel to their orbital angular momenta (Belczynski et al. 2008;
Qin et al. 2018; Zaldarriaga et al. 2018; Bavera et al. 2020).
Significant spin–orbit misalignment, in contrast, is considered
difficult to achieve under canonical isolated binary evolution and
so would indicate either the presence of alternative formation
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channels or a change in the paradigm of isolated binary
evolution (Rodriguez et al. 2016; Farr et al. 2017; Callister et al.
2021a; Steinle & Kesden 2021; Tauris 2022). The degree to
which black holes are observed to be primarily spinning or
nonspinning, meanwhile, would support or refute theories
positing highly efficient angular momentum transport in stellar
interiors (Spruit 1999; Fuller et al. 2015; Fuller & Ma 2019).

Our goal in this paper is to revisit these incompatible
conclusions. In Section 2 we review recent literature and
describe in more detail what is known, unknown, and still
debated about binary black hole spins. We then employ a
string of increasingly sophisticated analyses to study the
population of binary black hole spins and determine what we
can and cannot robustly conclude about the magnitudes and
orientations of black hole spins. We begin in Section 3 with a
simple counting argument, which demonstrates that the
fraction of black holes that are nonspinning is consistent with
zero. We then turn to full hierarchical analyses of the binary
black hole population, studying the distributions of effective
inspiral spins (Section 4) and component spin magnitudes and
orientations (Section 5). In all cases, we find that the fraction
of nonspinning black holes can comprise up to 60%–70% of
the total population, but that this fraction cannot be
confidently bounded away from zero. Overall, the inferred
spin-magnitude distribution is consistent with a single
population extending smoothly from zero up to magnitudes
of approximately 0.4. Additionally, we find a preference for
considerable spin–orbit misalignments among the binary
black hole population, with some spins inclined by more
than 90° relative to their orbits.

2. The Spins of Black Holes in Binaries

Each component black hole in a binary has dimensionless
spin vectors χ1 and χ2. Six parameters are needed to fully
specify these two spins, with each spin vector characterized by
a magnitude 0� χi� 1, tilt angle θi, and azimuthal angle fi,
where iä {1, 2}.

Not all spin degrees of freedom are as dynamically important in
a gravitational-wave signal, however. While the two spin
magnitudes are conserved throughout the binary evolution (modulo
horizon absorption effects; Poisson 2004; Chatziioannou et al.
2013), the four spin angles vary due to spin precession. A
combination known as the effective inspiral spin is conserved under
spin precession to at least the 2PN order5 (Racine 2008):
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reflects the degree of in-plane spin and characterizes spin-
precession dynamics (Schmidt et al. 2015).6 Although modern
waveform models make use of the full six-dimensional spin

parameter space (Khan et al. 2019; Varma et al. 2019; Ossokine
et al. 2020; Pratten et al. 2021), earlier versions were
constructed in terms of χeff and χp, leveraging their relevance
in binary dynamics.
At current signal strengths, it is not possible to meaningfully

constrain all six spin parameters. When exploring the
population of compact binary spins, we therefore generally
work in one of two lower-dimensional spaces.

1. The most straightforward approach is to constrain the
distribution of “effective” spin parameters. Though the
χeff and χp distributions do not unambiguously reveal
information about individual component spins, they do
enable categorical conclusions to be made regarding
compact binary spins. A nonvanishing χp distribution, for
example, indicates that spins are not perfectly aligned
with binary orbits, while the identification of negative χeff

requires at least some component spins to be inclined by
more that θi= 90°. A common approach, and the baseline
model that we will extend below, is to treat the marginal
distribution of χeff as a truncated Gaussian (Roulet &
Zaldarriaga 2019; Miller et al. 2020). We refer to this as
the Gaussian model; see Appendix A.1.

2. Going one step beyond the effective spin parameters, we
can directly model the distribution of component spin
magnitudes and tilt angles. A popular choice is to treat the
component spin magnitude distribution as a Beta
distribution, while spin tilts are drawn from a mixture
between two components, an isotropic component and a
preferentially aligned component (Talbot & Thrane 2017;
Wysocki et al. 2019). The azimuthal spin angles are
ignored and presumed to be uniformly distributed as f1,
f2∼U[0, 2π] (this assumption was relaxed in Varma
et al. 2022). We assume that component spin magnitudes
and tilts are independently and identically distributed
within this model and refer to it as the Beta+Mixture
model,7 discussed further in Appendix A.2.

2.1. What We Know about Black Hole Spins

Before proceeding to explore the prevalence of zero-spin
events and extreme spin–orbit misalignment (i.e., spin tilts
larger than 90°), it is useful to first examine the conclusions that
are broadly and robustly recovered by different analyses and
authors.
(i.) Black hole spins are not all maximal. Following the first

four binary black hole detections by Advanced LIGO, Farr
et al. (2017), and Farr et al. (2018) determined that if all
component spins are aligned (cos 1iq = ), then their magnitudes
must be small, χi 0.3. If spins were assumed to be
isotropically oriented, though, near-extremal spins were still
allowed. Tiwari et al. (2018) conducted a similar analysis using
an expanded catalog and also found large spins to be
disfavored, regardless of their orientation. The degeneracy
between spin magnitude and orientation was later broken by
efforts to simultaneously measure these two properties. Using
the Default model, Wysocki et al. (2019) and Abbott et al.
(2019a) found that typical spin magnitudes are small, with 50%5 An NPN order is defined as being proportional to u c N2( ) compared to its

leading-order term, where u is a characteristic velocity of the system and c is
the speed of light.
6 Recent work has also explored alternative parameters that better capture the
imprint of spin precession in gravitational-wave signals (Gerosa et al. 2021;
Thomas et al. 2021).

7 A closely related model in which the spin tilts are not independently and
identically distributed but instead both originate from either the isotropic or the
aligned component is called the Default spin model in Abbott et al.
(2021a, 2021b).
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of black holes having χ 0.3. Abbott et al. (2019a)
furthermore revisited the analysis of Farr et al. (2018), now
finding that large spin magnitudes are moderately disfavored
assuming isotropic orientations. Roulet & Zaldarriaga (2019),
meanwhile, studied the χeff distribution, leveraging the
Gaussian model to conclude that effective spins are
concentrated about zero. They argued that, if component spins
are aligned, then the measured χeff distribution implies that
component spin magnitudes are χ 0.1. Roulet & Zaldarriaga
(2019) additionally measured the fraction of binaries whose
secondaries have maximal spins due to tidal spin-up; they
found the fraction to be consistent with zero and bounded to
<0.3. To date, no confident detection has exhibited unambigu-
ously large χ 0.5.

(ii.) Black hole spins are not all zero. Despite evidence
pointing toward preferentially small spin magnitudes, not all
black holes can be nonspinning. Using the Gaussian effective
spin model, Roulet & Zaldarriaga (2019) and Miller et al. (2020)
concluded that the χeff distribution is inconsistent with a delta
function at zero; hence, the χeff distribution possessed either a
nonzero mean or nonzero width. This conclusion was bolstered
by Abbott et al. (2021a), who found that the χeff distribution is
centered at ∼0.05 with a nonzero width �0.08 and that the
component spin magnitude distribution peaks at small values but
also with a nonvanishing width of ∼0.15. Several individual
events such as GW151226 (Abbott et al. 2016) and
GW190517 (Abbott et al. 2021c) are also confidently known
to possess spin, although their component spins are individually
poorly measured (see e.g., Figure 11).

(iii.) Black holes exhibit a range of spin–orbit misalignment
angles. Because spin precession is a subtle effect, the spin tilts
of individual binaries are highly uncertain. Analyses of the
population, however, indicate that spins are not purely aligned
but instead exhibit a range of misalignment angles. In their
analysis of the χeff distribution, Tiwari et al. (2018) reported
evidence against pure spin–orbit alignment. Abbott et al.
(2021a) later employed the Default model to directly
measure the distribution of misalignment angles, recovering a
possible preference for alignment but ruling out perfect
alignment at high credibility. Abbott et al. (2021a) further-
more extended the Gaussian model to jointly measure the
mean and variance of both χeff and χp. They found a delta
function at χp= 0 to be disfavored, indicating the presence of
spin–orbit misalignment in the population. Galaudage et al.
(2021), meanwhile, used an extended version of the
Default model to measure the maximum spin–orbit
misalignment angle among the binary black hole population,
finding that the observed population requires some misalign-
ment angles exceeding θ 65° (cos 0.43q  ) at 99%
credibility. Evidence for spin precession identified in
individual events is also under active investigation (Abbott
et al. 2020a; Chia et al. 2022; Hannam et al. 2021; Islam et al.
2021; Mateu-Lucena et al. 2021; Hoy et al. 2022b; Estellés
et al. 2022; Vajpeyi et al. 2022).

2.2. What Is under Debate about Black Hole Spins?

(i.) Do most black holes have zero spin?Although it is
agreed that not all black holes can possess zero spin, a debated
question is whether most do. Using both the Default and
Gaussian models, Abbott et al. (2021a) found no indication
of an excess of zero-spin systems; predictive checks designed
to test the goodness-of-fit of these models found these

continuous unimodal distributions to be good descriptors of
the observed population. In the context of hierarchical black
hole formation, Kimball et al. (2020, 2021) directly measured
the fraction of “first-generation” black holes with zero spin,
finding this fraction to be consistent with zero. A different
conclusion was drawn in Roulet et al. (2021), who modeled the
χeff distribution not as a single Gaussian but via a mixture of
three components,
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corresponding to a half-Gaussian encompassing χeff> 0, a
half-Gaussian encompassing χeff< 0, and a Gaussian centered
at zero. This third component was intended to capture systems
with χeff= 0; its finite standard deviation (fixed to 0.04) was
chosen to mitigate sampling effects, a technical issue we
discuss further below. Roulet et al. (2021) argued that a
significant fraction of observed binaries are possibly associated
with this zero-spin subpopulation. They reported a maximum-
likelihood value of ζ0≈ 0.5, although ζ0 remained consistent
with zero. A similar but stronger conclusion was forwarded by
Galaudage et al. (2021). Working in the component spin
domain, they extended the Default model to include an
additional subpopulation whose spin magnitudes are identically
zero for both binary components. Galaudage et al. (2021)
concluded that 54 %25

21
-
+ of binaries are members of the zero-spin

subpopulation at 90% credibility.8

(ii.) Do some black holes have large spin
magnitudes?Abbott et al. (2021a) performed a series of
predictive checks, testing the goodness of fit of their models
against observation. They concluded that black hole spins are
well described by a single unimodal distribution concentrated
at small but nonzero values. In contrast, Galaudage et al. (2021)
argued that, although they infer most binary black holes to be
nonspinning, the remaining binaries are members of a distinct
rapidly spinning subpopulation. This secondary population is
claimed to exhibit a broad range of spin magnitudes, centered
at χ≈ 0.45 but extending to maximal spins. Hoy et al. (2022a)
noted that some individual events exhibit more confidently
positive spin than others, speculating that they comprise a
secondary population of more rapidly spinning events.
However, their results are based on the inspection of individual
posteriors and not hierarchical inference of the underlying
population, and so it is unclear how their conclusions compare
to those of Galaudage et al. (2021).
(iii.) Do extreme spin–orbit misalignments exist?Although

all analyses agree that at least a moderate degree of spin–orbit
misalignment exists, the question of extreme misalignments,
i.e., θ> 90°, remains. Using the Gaussian model, Abbott
et al. (2021a) inferred that at least 12% of binaries have
negative χeff, possible only if one or both component spins
have θ> 90°. To determine whether this conclusion was a
proper measurement or simply an extrapolation of their model,

8 During the late stages of preparation of this study, the exact numerical
results of Galaudage et al. (2021) were updated to account for an analysis bug,
though their main conclusions remain unchanged. Numbers in this manuscript
correspond to their updated results.
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Abbott et al. (2021a) introduced a variable lower bound eff,minc
on the Gaussian χeff distribution, finding the data to require

0eff,minc < at 99% credibility. Roulet et al. (2021), however,
found that this support for negative effective spins is
diminished when allowing for the possibility of a zero-spin
population as in Equation (3). Galaudage et al. (2021),
meanwhile, explored another variant of the Default comp-
onent spin model, now introducing a variable truncation bound
on the spin tilt distribution. They found this minimum cos q to
be consistent with zero. Motivated by these analyses, Abbott
et al. (2021b) further extended the Gaussian model to
include both a variable truncation bound and a possible zero-
spin subpopulation. They recovered diminished evidence for
negative effective spins but still recovered a preference for

0eff,minc < , now at 90% credibility. To date, no individual
events discovered by the LIGO–Virgo–KAGRA Collaboration
have confidently negative χeff or component spins unambigu-
ously inclined by more than 90° (Abbott et al. 2021d).
Independent reanalyses of LIGO/Virgo data have identified
several candidates with confidently negative χeff (Venumadhav
et al. 2020; Olsen et al. 2022), although most of these
candidates do not pass the significance threshold adopted in
Roulet et al. (2021).

3. A Counting Experiment

The central question of whether the majority of detected
black hole binaries have vanishing spins admits a quick back-
of-the-envelope estimate. Fully marginalized likelihoods9 have
been obtained for every event in GWTC-2 (Abbott et al. 2021c;
Kimball et al. 2021) under two different prior hypotheses: (i)
Both binary components are nonspinning (NS), with spin
magnitudes fixed to χ1,2= 0, and (ii) the black holes are
spinning (S), with spin magnitudes and cosine tilts distributed
uniformly across the intervals 0� χ1,2� 1 and 1- 
cos 11,2q  . The ratio of the fully marginalized likelihoods
gives the Bayes factor S

NS between the nonspinning and
spinning hypotheses. Such Bayes factors serve as a primary
input in the analysis of Galaudage et al. (2021), which makes
use of parameter estimation samples obtained under both
nonspinning and spinning priors; the Bayes factors between
hypotheses is critical in determining how to properly combine
these samples.

We start by considering a simple one-parameter model for
the fraction of nonspinning binaries, ζ. Given a catalog of Nobs

observations and data {d}, the likelihood of {d} is

p d p d
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where in the second line we have written the likelihood for
each individual event as the sum of two terms corresponding to
the nonspinning (NS) and the spinning (S) hypothesis. By
definition, p(NS|ζ)= ζ and p(S|ζ)= 1− ζ. Substituting these
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where the likelihood ratio p(di|NS)/p(di|S) is the nonspinning
versus spinning Bayes factor iS,

NS .
The Bayes factors computed in Abbott et al. (2021c) and

used by Galaudage et al. (2021) were obtained via nested
sampling (Skilling 2004, 2006; Speagle 2020). To evaluate
Equation (5), we instead use posterior samples under the
spinning hypothesis to calculate S

NS via a Savage–Dickey
density ratio. The Bayes factors we compute generally agree
with those used as inputs in Galaudage et al. (2021), although
with some notable exceptions that may contribute to the
discrepancies between their results and our own; see
Appendix G.
The solid curve in Figure 1 shows our resulting posterior on

ζ using only GWTC-2 events for which such Bayes factors are
available. We find that zero-spin fractions ζ 0.8 are excluded
at high credibility. It also appears that ζ= 0 is disfavored,
which would imply the presence of at least a few zero-spin
systems. However, note that the spinning hypothesis (S)
requires that spin magnitudes be distributed uniformly up to

1maxc = , a possibility that is heavily disfavored as discussed in
Section 2. What happens if we adopt a more plausible prior
distribution for the spinning hypothesis? To answer this
question, the dashed and dotted curves in Figure 1 show the
ζ posterior given by Equation (5) if we recompute S

NS but now

Figure 1. Posterior on the fraction ζ of binary black holes in which both
components have zero spin, as obtained in the simple counting experiment of
Section 3. This counting experiment uses only events detected through GWTC-
2 (Abbott et al. 2021c) and furthermore only relies on the fully marginalized
likelihoods for each binary under spinning (0 ,1 2 maxc c c  ) and nonspin-
ning (χ1 = χ2 = 0) priors. Values of ζ  0.8 are definitively ruled out.
Whether or not ζ is consistent with zero, however, depends more sensitively on
assumptions regarding the distribution of black hole spin magnitudes. If we
assume that black hole spins range uniformly up to 1.0maxc = , ζ = 0 is
disfavored. At the same time, relaxing maxc to slightly smaller values yields
posteriors increasingly consistent with zero, which would indicate no distinct
subpopulation of nonspinning systems.

9 Sometimes known as “evidence,” though in this paper we reserve this term
for nontechnical use.
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assume maximum spin magnitudes of 0.9maxc = and 0.8,
respectively, among the “spinning” population. We see that
even these small adjustments to maxc further rule out large ζ
and increasingly support ζ= 0.

If, rather than our Savage–Dickey estimates, we instead use
the same nested sampling Bayes factors adopted by Galaudage
et al. (2021), we now much more strongly rule out ζ= 0. In
Appendix G we track the origin of this behavior to one event,
GW190408_181802, whose nested sampling Bayes factor
appears significantly overestimated. This system is reported
to have a large Bayes factor 130S

NS ~ in favor of the
nonspinning hypothesis, but this conclusion is not supported by
the posterior on this system’s spins (and thus the Savage–
Dickey density ratio); see Figure 14. When we exclude
GW190408_181892 from our sample, we obtain consistent p
(ζ) posteriors from both sets of Bayes factors. When including
this event, however, the nested sampling Bayes factors cause p
(ζ= 0) to be underestimated by a factor of ∼102 relative to the
result obtained with Savage–Dickey ratios (again see
Figure 14). This could account for the nonzero fraction of
nonspinning events found in Galaudage et al. (2021).

The initial check presented in Figure 1 suggests that the
conclusion that most binary black holes comprise a distinct
nonspinning subpopulation is inconsistent with the parameter
estimates for individual binary black systems. At the same
time, however, we saw that exact quantitative conclusions
depend sensitively on assumptions regarding other aspects of
the binary black hole population. We therefore need to
undertake a more complete hierarchical analysis, measuring
the zero-spin fraction ζ while simultaneously fitting the
distribution of black hole spin magnitudes and orientations.

4. No Sharp Features in the Effective Spin Distribution

Going beyond our simple counting experiment, we next
consider hierarchical inference of the effective spin

distribution. An excess of events with vanishing spins would
have stark implications for the distribution of effective spin
parameters. In Figure 2 we compare the χeff distribution
implied by the results of Galaudage et al. (2021) and Abbott
et al. (2021b). If most black holes are indeed nonspinning, we
should correspondingly see a prominent spike at χeff= 0, and if
such a spike exists it should be robustly measurable using an
appropriate model.
There are two benefits to searching for this excess of zero-

spin systems in the χeff domain before proceeding to more
carefully explore the distribution of component spins. First,
inference of the χeff distribution offers an independent and
complementary check on the existence of a prominent zero-
spin population: such a feature should be detectable either in
the space of component spins or effective spins. Second, by
analyzing χeff and not the higher-dimensional space of spin
magnitudes and tilts, we can more easily avoid systematic
uncertainties due to finite sampling effects. As detailed in
Appendix B, the core ingredients in any hierarchical analysis
are the posteriors p(λi|di) on the properties λi of our individual
binaries (labeled by i ä [1, Nobs]). In general, however, we do
not have direct access to these posteriors, but instead have
discrete samples {λi,j} drawn from the posteriors, where j ä [1,
Ni] enumerates the samples from posterior i and Ni is the total
number of samples for this event. We therefore ordinarily
replace integrals over p(λi|di) with Monte Carlo averages over
these discrete samples. The fundamental assumption under-
lying this approach is that the posterior samples are sufficiently
dense relative to the population features of interest. In this
paper, however, we are concerned with very narrow features in
the binary black hole spin distribution; see Figure 2. In this
case, we cannot automatically assume that Monte Carlo
averages over posterior samples will yield accurate results.
Analysis of the χeff distribution allows us to circumvent

these sampling issues by alternatively representing each event’s
posterior as a Gaussian kernel density estimate (KDE) over its
posterior samples. This approach effectively imparts a finite
“resolution” to each posterior sample, and allows us to assess
the likelihood of arbitrarily narrow population features that
would otherwise cause the typical Monte Carlo procedure to
break down. Further details about the KDE representation of
posteriors are provided in Appendix E.
Motivated by Figure 2, we attempt to measure the presence

of any zero-spin subpopulation by modeling the χeff distribu-
tion as a mixture between a broad “bulk” population, centered
at μeff with width σeff, and a narrow “spike” centered at zero,

6

p , , , 0,

1 , .
eff spike eff eff spike 1,1 eff

spike 1,1 eff eff eff

( )

( ∣ ) ( ∣ )

( ) ( ∣ )
[ ]

[ ]

c z m s z c

z c m s

=

+ -
-

-

 



We call this the GaussianSpike model; see Appendix A.1
for further details. Leveraging the KDE posterior representation
introduced above, we take ò= 0, such that the spike is infinitely
narrow at χeff= 0. We hierarchically infer the parameters of
this model using every binary black hole detection in GWTC-
3 (Abbott et al. 2021d) with a false-alarm rate below 1 yr−1; see
Appendix B for further details on the data we use.
The blue curve in Figure 3 shows our resulting marginal

posterior on the fraction ζspike of binary black holes comprising
a zero-spin spike. We find that ζspike remains consistent with
zero, indicating no evidence for an over-density of events at

Figure 2. Marginal posterior distribution for χeff using results from Abbott
et al. (2021b) that have no excess of zero-spin events (blue) and results from
Galaudage et al. (2021) that imply that ∼50% of binaries have zero spins (red).
The solid lines trace the mean distribution inferred by each model while shaded
regions denote the 90% credible regions; the light traces trace individual draws
from the population posterior under each model. We see that, if a significant
fraction of binary black holes are indeed nonspinning, this should be clearly
identifiable through their χeff distribution. This figure is modeled after Figure 5
of Galaudage et al. (2021).
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χeff= 0. For reference, the “zero-spin” fraction measured by
Roulet et al. (2021) (ζ0 in Equation (3)) is shown as a dashed
black curve. The results from Roulet et al. (2021) are
qualitatively consistent with our own; exact agreement is not
expected due to the different models and different data
employed in each analysis.

Although ζspike is not bounded away from zero, a nonzero
value is nevertheless preferred, with a maximum posterior
value of ζspike≈ 0.5. We demonstrate that this behavior is not
unexpected from intrinsically spike-less populations. We
perform a series of null tests, repeatedly simulating and
analyzing catalogs of events drawn from a spikeless population
and with uncertainties typical of current detections; see
Appendix F for further details on the simulations. The gray
curves in Figure 3 show the posteriors on ζspike given by these
synthetic catalogs. Despite being drawn from a spikeless
population, the simulated catalogs generically yield posteriors
morphologically similar to the those obtained using actual
observations, with some posteriors that even more extremely
(and incorrectly) disfavor ζspike= 0.

The cause of this behavior is a degeneracy between μeff and
ζspike. The mock catalogs that strongly disfavor ζ= 0 are
typically those that have events with moderately high, well-
measured effective spins. The presence of such events increases
the inferred mean μeff of the “bulk” population, pulling the bulk
away from those events near χeff≈ 0 and leaving them to be
absorbed into a zero-spin subpopulation. We have verified that
removing the most rapidly spinning events from these mock
catalogs indeed acts to resolve the apparent tension in Figure 3;
see Appendix F. This demonstration further emphasizes the
need for additional caution when drawing strong astrophysical
conclusions based on narrow population features, particularly

in the regime when uncertainties on individual events are much
larger than the features of interest.
Going beyond the question of a narrow spike at zero, we

now more generally ask if there is evidence for any bimodality
in the χeff distribution of binary black holes. We explore this
question using the BimodalGaussian model (see
Appendix A.1) in which the “spike” in Equation (6) is replaced
with a second, independent Gaussian with a variable mean and
width. The χeff distribution inferred under this model is shown
in Figure 4, where light traces show individual draws from our
population posterior and the slide lines mark 90% credible
bounds. We find no evidence that the effective spin distribution
deviates from a simple unimodal shape. For reference, the
dashed black line marks the mean distribution inferred using a
simple Gaussian model. Inference using the more complex
BimodalGaussian remains extremely consistent with this
simple result, with both models yielding consistent means
(0.05 0.03

0.03
-
+ and 0.06 0.03

0.04
-
+ under the Gaussian and Bimodal-

Gaussian models, respectively) and standard deviations
(0.09 0.04

0.03
-
+ and 0.12 0.08

0.04
-
+ ).

An alternative way to test for the presence of additional
structure in the χeff distribution is to ask about the predictive
power of our models: Are there systematic residuals between
the χeff values we observe and those predicted by each model?
In Appendix C we subject the Gaussian, GaussianSpike,
and BimodalGaussian models to predictive tests, finding
that all three models, once fitted, successfully predict the
observed χeff values among GWTC-3. The fact that the simple
Gaussian model passes this check once more points to the
lack of observational evidence for additional structure in the
binary black hole χeff distribution, whether a spike, a secondary
mode, or still other feature.

5. The Population of Spin Magnitudes and Tilts

Preliminary results so far, based on the Bayes factor
counting experiment in Section 3 and hierarchical χeff analyses
in Section 4, do not point to an excess of zero-spin events. Here
we confirm these conclusions via a more complete inference of

Figure 3. Marginalized posterior on the fraction ζspike of binary black holes
comprising a distinct subpopulation with χeff = 0. The blue curve shows the
results obtained through analysis of the binary black holes in GWTC-3 (Abbott
et al. 2021d). We find ζspike to be consistent with zero, indicating no evidence
for an excess of zero-spin systems. Nevertheless, p(ζspike) peaks suggestively at
ζspike ≈ 0.5. We demonstrate that this is not unexpected by repeatedly
generating and analyzing mock catalogs of χeff measurements, drawn from
an intrinsically spikeless population described by a simple Gaussian. These
catalogs yield posteriors similar to our own, often (and incorrectly) disfavoring
ζspike = 0. As discussed in the main text, this behavior is due to a degeneracy
between ζspike and the inferred mean of the spinning “bulk” population. For
reference, the black dashed line shows the posterior on the zero-spin fraction ζ0
inferred in Roulet et al. (2021), which is qualitatively consistent with both our
GWTC-3 measurement and the simulated spikeless measurements.

Figure 4. The χeff distribution as inferred by a BimodalGaussian effective
spin model, defined as the sum of two Gaussians (see Appendix A). Solid blue
lines denote the 90% credible intervals, while blue light curves are select
individual draws from the posterior. For reference, the dashed black curve
shows the mean χeff distribution as inferred using a single Gaussian. Both
results are consistent with one another, indicating no evidence for bimodal
features, narrow or otherwise, in the binary black hole χeff distribution.
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the component spin magnitude and tilt distributions under a
series of increasingly complex models.

As a baseline model (Talbot & Thrane 2017; Wysocki et al.
2019; Abbott et al. 2021a, 2021b), we take each component
spin magnitude to be distributed following a Beta distribution,

p
c

,
1

,
, 7i

i i
1 1

( ∣ )
( )
( )

( )c a b
c c

a b
=

-a b- -

where c(α, β) is a normalization constant. Every spin tilt,
meanwhile, is distributed as a mixture between an isotropic
component and a preferentially aligned component, modeled as
a half-Gaussian centered at cos 1q = :

p f
f

fcos ,
2

1 cos 1, . 8i t i tiso
iso

iso 1,1( ∣ ) ( ) ( ∣ ) ( )[ ]q s q s= + - -

We refer to Equations (7) and (8) as the Beta+Mixture
model. A related version of this model in which both
component spin tilts are together drawn from either the
isotropic or the aligned component is also called the Default
spin model in Abbott et al. (2021a, 2021b).

Galaudage et al. (2021) explored an extension to the
Default model that allowed for an excess of systems with
zero spin and a variable bound on the spin tilt distribution; it
was termed the Extended model in that study. Motivated by
these extensions, we introduce the possibility of a zero-spin
“spike” in the spin magnitude distribution, modeled as a half-
Gaussian with finite width òspike centered at zero:
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Following Galaudage et al. (2021) we also introduce a variable
truncation bound zmin on the spin-tilt distribution:
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for z cos 1imin q  . We refer to Equations (9) and (10)
together as the BetaSpike+TruncatedMixture model.
To better understand how conclusions regarding a zero-spin
excess and the prevalence of spin–orbit misalignment are
related, we also consider variants of this model in which only
one extended feature is present: a zero-spin spike but no cos q
truncation (BetaSpike+Mixture) or a cos q truncation but
no spike (Beta+TruncatedMixture). See Appendix A.2
for further details.

Our full BetaSpike+TruncatedMixture model dif-
fers from the Extended model of Galaudage et al. (2021) in
two ways. First, we do not fix the width òspike of the vanishing
spin subpopulation, but instead treat it as a free parameter to be
inferred from the data. This allows us to test whether a narrow
subpopulation is actually preferred by the data, similar to our
investigation with the BimodalGaussian model in
Section 4 above. We adopt a prior requiring òspike� 0.03. This
lower limit is motivated by tracking our number of effective
posterior samples per event (see further discussion below), and

by the effective population resolution of our catalog, which we
estimate as

⎛
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1 1 1
, 11
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2

,
2
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where i,
2

1
sc and i,

2
2

sc are the variances of the spin magnitude
posteriors for each event i. We find σobs= 0.02, approximately
equal to our lower bound on òspike.
Second, the Extended model does not allow for

independently and identically distributed spin magnitudes and
orientations. Instead, component spin magnitudes are either
both vanishing or both nonvanishing in a given binary. This
choice precludes astrophysical scenarios such as tidal spin-up,
which is expected to affect only one component spin in a given
binary. Similarly, within the Extended model, the spin tilts
are both either members of the isotropic component or the
preferentially aligned component in Equation (10). Here, we
instead assume that all component spin magnitudes and tilts are
independently drawn from Equations (9) and (10).
When hierarchically analyzing the χeff distribution above,

we relied on a KDE representation of individual-event
likelihoods p(di|λi) to mitigate sampling uncertainties and
evaluate population models with narrow features. This trick
cannot be straightforwardly applied to inference of the
component spin distribution, due to both the increased
dimensionality and the fact that the sharp feature of interest
(a spike at χ1= χ2= 0) lies on the boundary of parameter
space, rather than the center. We will therefore return to
standard Monte Carlo averaging over posterior samples when
hierarchically inferring the component spin distribution. To
diagnose possible breakdowns in our inference due to finite
sampling effects, we monitor the effective number of posterior
samples, Neff, informing our Monte Carlo estimates for each
event’s likelihood. As discussed in Appendix D, we explicitly
track Nmin ieff,[ ( )]L , the minimum effective sample count
across all events for a proposed population Λ, and use this
quantity to define which regions of parameter space we can and
cannot make claims about. In particular, we find that we expect
reliable population inference when òspike> 0.03.
Figure 5 shows the measured spin magnitude and tilt

distributions under our four component spin models, and we
show the posteriors obtained on the hyperparameters of each
model in Figure 6. To hierarchically measure the component
spin distribution, we again use all binary black holes in GWTC-
3 with false-alarm rates below 1 yr−1; see Appendix B for
details.
For those models allowing a distinct zero-spin spike, the left

panels of Figure 5 indicate that such a feature is not required to
exist. We instead see inferred spin magnitude distributions
consistent with a single, smooth function that remains finite at
χ= 0, with most events having spin magnitudes in the χ ä (0,
0.3) range. Correspondingly, the posteriors on fspike in Figure 6
are consistent with zero. Compared to the fraction ζspike with
χeff= 0 (see Figure 3), we find that fspike is more consistent
with zero. We interpret this variation as reflective of the
systematic uncertainty in exactly how the question “does there
exist an excess of zero-spin systems?” is posed: whether in the
component spin or effective spin domains, with a delta function
at zero or a finite-width spike, etc. Despite these differences, all
results indicate that the presence of a zero-spin population is
not required by the current data. A zero-spin population is not
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precluded, though: both sets of results bound any zero-spin
fraction to 60%, suggesting that a distinct zero-spin
population could yet emerge in future data.

The fraction fspike is primarily correlated with μχ, the mean
of the “bulk” spin magnitude population. Larger μχ values
reduce the capability of this “bulk” Beta distribution to
accommodate events with small spin; these events will
therefore necessarily be assigned to the “spike” and thus
increase the value of fspike. This is similar to the phenomenon
identified in Section 4 above. Additionally, all four component
spin models yield similar spin magnitude distributions above
χ 0.4, suggesting that the data are robustly consistent with
the absence of large spin magnitudes. Table 1 lists the 1st and
99th spin magnitude percentiles (χ1% and χ99%, respectively)
under each model; our most conservative estimate gives

0.6799% 0.21
0.20c = -

+ .
In contrast to Galaudage et al. (2021), we left the width òspike

of our “spike” population as a free parameter in order to test
whether the data indeed require a narrow feature at χ= 0.
Although we recover largely uninformative constraints on
òspike, Figure 6 in fact shows a slight preference for large òspike,

further indicating that no narrow features are confidently
present in the spin magnitude distribution. Our conclusions
regarding small òspike, however, are limited by the finite
sampling effects discussed above. In Appendix D we study the
number Neff of effective posterior samples as a function of
òspike. We find that Neff depends sensitively on òspike, and we
caution that values of òspike 0.04 are possibly subject to
significant Monte Carlo uncertainty. Even with this restriction,
however, we find no preference for a small òspike in the
posterior. This conclusion is further bolstered by the analysis of
the effective spin distribution in Section 4 above, which was
not subject to finite sampling effects and which similarly found
no evidence for an excess of zero-spin systems.
Irrespective of modeling assumptions regarding a zero-spin

subpopulation, all four component spin models exhibit
significant support at negative cos q in Figure 5. Models that
allow for a truncation in the spin tilt distribution consistently
infer this truncation to be at negative values; in Figure 6 we
correspondingly see that z 0min  at high significance. This
result signals the presence of events with spins misaligned by
more than 90° from their Newtonian orbital angular momen-
tum. Table 1 gives the first percentile (z1%) on cos q inferred by

Figure 5. Inferred distributions of component spin magnitudes (left), spin–orbit tilts (middle), and effective inspiral spins (right) of binary black holes under the
various component spin models considered in this paper. Solid black lines denote the median and the 90% credible intervals, while red/green light curves correspond
to individual draws from the posterior for each model. Among models that allow for a distinct subpopulation of nonspinning systems (bottom two rows), we infer that
the fraction of binaries in such systems is consistent with zero. Meanwhile, we find that the cos q distribution confidently extends to negative values; models that allow
for a sharp truncation in the cos q distribution require this truncation to occur at z 0min < . Despite the varying component spin magnitude and tilt distributions
recovered by these different models, all yield similar χeff distributions. For reference, the dashed black curves in the right-hand column show the mean χeff distribution
obtained by direct inference with the BimodalGaussian model of Section 4; all four component spin models give χeff distributions that are consistent with this
result.
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Figure 6. One- and two-dimensional marginalized posteriors for the parameters of each component spin model we consider (see Appendix A.2). These posteriors
correspond to the measured distributions of component spin magnitudes and tilts shown above in Figure 5. Some parameters are defined only for a subset of
component spin models. The shaded region in the joint μχ–σχ posterior is the region excluded by the prior cut on the shape parameters of the spin magnitude Beta
distribution; see Appendix A.2. We find that the fraction fspike of black holes comprising a zero-spin subpopulation is consistent with zero. The data also require that at
least some spins are misaligned by more than 90° relative to their Newtonian orbital angular momentum; among models that include a variable truncation bound zmin

on the cos q distribution, this bound is inferred to be confidently � 0, regardless of assumptions about a possible zero-spin subpopulation. Allowing such a truncation
bound, meanwhile, significantly impacts constraints on fiso, the fraction of binaries with isotropically oriented spins, as well as σt, the width of a preferentially spin-
aligned mixture component (see Equation (8)). As seen in Figure 5, the introduction of a truncation bound yields a significantly flatter p cos( )q distribution,
corresponding here to larger values of fiso and σt.

Table 1
Median and 90% Credible Intervals on Various Physical Quantities of Interest under Various Component Spin Models

Model fspike zmin z1% χ1% χ99% χeff,1% χeff,99%

Beta+Mixture L L 0.96 0.02
0.07- -

+ 0.02 0.02
0.05

-
+ 0.58 0.16

0.18
-
+ 0.20 0.13

0.10- -
+ 0.27 0.09

0.12
-
+

BetaSpike+Mixture 0.22 0.22
0.31

-
+ L 0.96 0.02

0.08- -
+ 0.004 0.003

0.010
-
+ 0.64 0.19

0.20
-
+ 0.21 0.13

0.10- -
+ 0.30 0.10

0.13
-
+

Beta+TruncatedMixture L 0.55 0.22
0.19- -

+ 0.53 0.21
0.18- -

+ 0.03 0.03
0.05

-
+ 0.57 0.14

0.19
-
+ 0.10 0.10

0.06- -
+ 0.27 0.09

0.12
-
+

BetaSpike+TruncatedMixture 0.33 0.33
0.27

-
+ 0.49 0.26

0.26- -
+ 0.47 0.25

0.27- -
+ 0.003 0.002

0.008
-
+ 0.67 0.21

0.20
-
+ 0.10 0.11

0.08- -
+ 0.30 0.10

0.15
-
+

Note. From left to right, we present the fraction of black holes that belong in the (finite-width) zero-spin spike ( fspike; see Figure 6 for the posterior), the minimum
value of the spin tilt (z ;min Figure 6 for the posterior), 1% lower value of the spin-tilt posterior distribution (z1%), the 1%/99% lower/upper values of the spin-
magnitude posterior distribution (χ1%/χ99%), and the 1%/99% lower/upper values of the effective-spin distribution (χeff,1%/χeff,99%). We choose to report 1% and
99% values because 1/Nobs = 0.014 ; 1% for our Nobs = 69 events.
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each model, with z 0.471% 0.25
0.27= - -

+ in the most conservative
case. Notably, the addition of truncation in the spin tilt
distribution significantly “flattens” the recovered cos q distribu-
tion, no longer requiring any peak at cos 1q = . This behavior
is due to the fact that the data disfavor an equal density of
events at cos 1q = + and cos 1q = - . Because an isotropic
distribution is necessarily symmetric at cos 1q =  , models
that allow for a mixture of isotropic and aligned spin tilts must
compensate by adding more weight to the “primarily aligned”
Gaussian component in Equation (8). No such compensation is
necessary if the spin tilt distribution is allowed to truncate. In
models including a zmin truncation, all events are either
assigned to the “isotropic” (but now truncated) component, or
the Gaussian component itself is stretched to near-isotropy; in
Figure 6 we see that fiso becomes consistent with unity and σt
shifts to prefer large values when a truncation is included in the
model.

This result indicates the presence of events with tilt angles
greater than 90°, and hence the possibility of binaries with
effective spins χeff< 0. The third column in Figure 5 shows the
χeff distributions implied by each component model. Despite
the wide range of possible features possessed by each model,
they all yield similar χeff distributions that exhibit asymmetry
about zero but that extend to negative values. As a consistency
check, we also compare these implied χeff distributions to our
result obtained through direct inference on χeff. The dashed
curve in each panel shows the mean obtained under the
BimodalGaussian effective spin model. Each of the four
component spin models yields consistent χeff distributions,
although they are suggestive of possible additional
skewness (Abbott et al. 2021a, 2021b). As an additional
consistency check and safeguard against erroneous conclusions
due to poorly-fitting models, we subject each of the component
spin models to predictive checks, as introduced in Section 4
above. The results, shown in Appendix C, indicate that all four
models provide a good fit to observation.

As a proxy for the minimum χeff values implied by our
component spin results, Figure 7 shows posteriors on the first
percentile (χeff,1%) of the effective spin distribution corresp-
onding to each model. Under the BetaSpike+Truncated-
Mixture model, for example, we find 0.10eff,1% 0.11

0.08c = - -
+

and bound χeff,1%< 0 at 98.8% credibility. This finding is
consistent with the conclusions drawn by Abbott et al.
(2021a, 2021b), who added a lower truncation in the χeff

distribution and inferred 0eff,minc < at ∼90% credibility. Our
conclusions are also consistent with Roulet et al. (2021), who
modeled the χeff distribution as the sum of a positive component,
a negative, and a “near-zero” component whose 2σ width
spanned −0.08<χeff< 0.08; see Equation (3). This near-zero
component is broad enough to likely encompass the negative, but
near-zero, χeff,1% values we report here.
Finally, Figures 5 and 6 reveal how questions regarding

zero-spin subpopulations and spin–orbit misalignment are
potentially related. The inclusion or exclusion of a zero-spin
subpopulation (Beta+TruncatedMixture versus Beta-
Spike+TruncatedMixture) has a negligible effect on our
conclusions regarding the location of zmin. On the other hand,
the introduction of a spin tilt truncation (BetaSpike
+Mixture versus BetaSpike+TruncatedMixture)
more noticeably impacts the inferred fspike posterior, resulting
in less support for zero. As discussed above, though, the spin
tilt truncation has a much larger effect on fiso, which becomes
consistent with 1 (i.e., no excess of spin-aligned events) when a
spin tilt truncation is included in the model. This same effect
can be seen in Figure 4 of Galaudage et al. (2021).

6. Discussion and Conclusions

In this paper we have sought to explore the three open
questions posed in Section 2.2 via three complementary routes:
a counting experiment using only the fully marginalized
likelihoods for each event, hierarchical analysis of the binary
black hole effective spin distribution, and hierarchical analysis
of the binaries’ component spin distribution. Each of these
three routes yielded consistent conclusions, which we summar-
ize below.
(i.) We find no evidence for an excess of zero-spin events.

Using each of our three methods we find that the fraction of
black holes in a distinct zero-spin subpopulation is consistent
with zero. We furthermore verified that this behavior is
common among analyses of synthetic populations lacking a
zero-spin excess. We therefore conclude that the observational
data do not presently support the notion that the majority of
black holes in merging binaries are nonspinning. Given current
observations, a nonspinning population can comprise at most
60%–70% of merging binary black holes.
(ii.) The inferred population is consistent with less than 1%

of spin magnitudes above χ∼ 0.6. In each of the component
spin models explored in Section 5, the inferred population is
nearly identical for spin magnitudes χ 0.4, falling rapidly,
with negligible support for χ 0.6. This conclusion is robust
against modeling systematics, including a possible truncation
in the spin tilt distribution or a zero-spin subpopulation.
(iii.) Binary black holes exhibit a broad range of spin–orbit

misalignment angles, with some angles greater than 90°. In all
models, we find a preference for a flat and broad distribution of
spin–orbit misalignment angles. When we introduce a lower
truncation bound on the cos q distribution, we confidently infer
that this truncation bound must be negative, thus requiring the

Figure 7. Posterior for the first percentile (χeff,1%) of the χeff distributions
implied by each of our component spin models, as shown in the right-hand
column of Figure 5. The median values and 90% credible intervals for χeff,1%

are also reported in Table 1. Each of our component spin models require the
binary black hole population to contain spins misaligned by more than 90°
relative to their Newtonian orbital angular momentum. Correspondingly,
χeff,1% is inferred to likely (although not necessarily) be negative. The χeff,1%

values recovered here are consistent with the minimum χeff values measured
by Abbott et al. (2021a, 2021b).
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presence of systems with antialigned spins among the binary
black hole population. Additionally, the minimum χeff among
the binary black hole population is inferred to be confidently
negative under each component spin model.

Our conclusions are consistent with the findings of Abbott
et al. (2021a, 2021b), who reported evidence for spins
misaligned by more than 90° and no modeling tension that
would indicate the existence of a large zero-spin subpopulation.
Our conclusions are moreover in broad agreement with Roulet
et al. (2021). Figure 3 shows the inferred fraction of events
with χeff= 0 from this work and the inferred fraction of events
in the “zero-spin” subpopulation (ζ0 in Equation (3)) from
Roulet et al. (2021). Both results are in qualitative agreement,
consistent with a zero-spin fraction of zero but peaking at ∼0.5.
As demonstrated in Section 4, posteriors of this form arise
generically when analyzing mock catalogs of events drawn
from a population lacking a zero-spin subpopulation.

Roulet et al. (2021) find that the fraction of events in their
“negative-spin” subpopulation is consistent with zero; this too
is consistent with our result. As discussed in Section 5, we infer
χeff,1% to be negative but small in magnitude. Because Roulet
et al.ʼs (2021) “zero-spin” subpopulation has a broad standard
deviation of 0.04, events with negative but small-in-magnitude
χeff are counted as members of this zero-spin subpopulation,
rather than associated with the “negative-spin” subpopulation.
Indeed, Roulet et al. (2021) conclude that the sum of their
“zero-spin” and “negative-spin” subpopulations is nonzero.
This is evident from Figure 3 of Roulet et al. 2021, in which
ζpos is inconsistent with 1.

Shortly after the initial circulation of our study, an
independent and complementary study of binary black hole
spins was presented by Mould et al. (2022). They sought to
explore evidence for mass ratio reversal in compact binary
formation, employing models in which component spins are
not independently and identically distributed. As in our study,
though, they additionally considered the possibility of zero-
spin spikes appearing in the spin-magnitude distribution. Their
findings corroborate our own, indicating that <46% of black
hole primaries and <36% of secondaries have vanishing spins.

At the same time, our conclusions are generally inconsistent
with those reported by Galaudage et al. (2021). Although our
posterior distributions do overlap with those of Galaudage et al.
(2021) to within statistical uncertainty, differences between
them result in qualitatively different conclusions regarding the
nature of binary black hole spins. Below, we detail several
differences between our analyses and those of Galaudage et al.
(2021) and comment on whether each could be contributing to
the discrepancy.

First, an important categorical difference between our
analyses and those conducted in Galaudage et al. (2021) is
the sample of gravitational-wave events analyzed. While our
counting experiment in Section 3 uses only GWTC-2 (Abbott
et al. 2021c) events, the hierarchical analyses in Section 4 and
Section 5 make use of the full GWTC-3 catalog (see
Appendix B for the exact event selection criteria). Galaudage
et al. (2021), meanwhile, analyzed only GWTC-2 events, as
GWTC-3 had not yet been released at the time of their study.
To gauge whether our differing data sets contribute to the
disagreement between our own conclusions and those of
Galaudage et al. (2021), in Appendix H we show results
obtained using only GWTC-2 events. Our results are
qualitatively unchanged, with GWTC-2 yielding no evidence

for a distinct subpopulation of nonspinning black holes.
Additionally, GWTC-2 contains spin–orbit misalignment
greater than 90°, though at a slightly reduced credibility
compared to GWTC-3 (97.1% versus 99.7% quantiles).
Unlike our analyses, which use a single set of posterior

samples for each event, Galaudage et al. (2021) make use of
two distinct sets of samples for each binary, obtained under
spinning and nonspinning parameter estimation priors. In order
to perform inference with both sets of samples, it is necessary
to quantify the Bayes factors between these priors for each
event. As we mentioned in Section 3 and illustrate further in
Appendix G, there is at least one event whose fully margin-
alized likelihood under the nonspinning hypothesis is sig-
nificantly overestimated in the data set used by Galaudage et al.
(2021). This could cause Galaudage et al. (2021) to spuriously
confirm the existence of a distinct nonspinning subpopulation.
Another factor may be the demand by Galaudage et al.

(2021) that the zero-spin subpopulation have a vanishing width.
In Section 5, we did not fix the width òspike of our approximate
zero-spin spike, but let it vary as another free parameter to be
inferred from the data. In addition to concluding that the
fraction fspike of events occupying this spike is consistent with
zero, we also found no preference for the spike to be narrow,
even if it were to exist. If we nevertheless require òspike to be
small, however, we do see an increased preference for larger
fspike. It is therefore possible that the strict delta-function model
adopted by Galaudage et al. (2021) is systematically affecting
their results. We note, however, that our posteriors in the region
òspike� 0.04 may be subject to elevated Monte Carlo variance
(see Appendix D) and so we cannot confidently conclude that
the demand of òspike= 0 is responsible for the discrepant
conclusions.
Although we may be able to reproduce Galaudage et al.ʼs

(2021) measurement of fspike by artificially demanding small
òspike, we are unable to reproduce their conclusions regarding
zmin, the lower truncation bound on the component spin cos q
distribution. While we infer zmin to be confidently negative,
indicating spins misaligned by more than 90°, Galaudage et al.
(2021) infer this parameter to be consistent with zero or
positive values. Qualitatively, binaries with large in-plane spins
are difficult to distinguish from binaries with very small or
vanishing aligned spins—both give the same χeff values.
Therefore, if Galaudage et al. (2021) are overestimating the
fraction fspike of nonspinning systems, they may correspond-
ingly be underestimating the prevalence of systems
with significant spin–orbit misalignments. This said, neither
Galaudage et al.ʼs (2021) results nor our own exhibit any
significant correlation between zmin and fspike.
Finally, although our spin models were heavily inspired by

those of Galaudage et al. (2021), ours do not reduce to theirs in
the limit òspike= 0. Our component spin models assume that
individual spins are independently and identically distributed
between spike and bulk subpopulations, whereas Galaudage
et al. (2021) assume that both spins in a given binary together lie
in the spike or the bulk of the component spin distribution.
Similarly, Galaudage et al. (2021) require that both spins are
together members of the isotropic or preferentially aligned
components of the spin tilt distribution. We have verified that
this modeling choice is not responsible for the different
conclusions regarding fspike, as can be seen in Figure 17 in
Appendix H. In fact, we find that fspike is constrained to even
smaller values if we alternatively adopt Galaudage et al.ʼs (2021)
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modeling convention. This is expected: under the convention of
Galaudage et al. (2021), a component spin can only contribute to
fspike if its companion is also consistent with zero spin. Under our
assumption of independent and identically distributed spins, in
contrast, a component spin can be identified as a member of the
zero-spin spike regardless of its companion’s spin measurement.
Such differing conventions and how they impact population
measurements are further elaborated upon in Appendix H.

Overall, we find a component spin distribution that is
consistent with a single, smooth function. Our results suggest
that the spin distribution is possibly nonzero at χ= 0, but
without a requirement for a distinct and discontinuous
subpopulation of nonspinning black holes (see Figure 5). Such
a behavior cannot be easily captured by the common modeling
choice of a nonsingular Beta distribution, which is constrained
to vanish at χ= 0. This tension is illustrated in the joint μχ–σχ
posterior of Figure 6, which shows the inferred mean and
variance of the spin magnitude distribution railing against the
prior cut that ensures nonsingular behavior. When the spin
magnitudes are modeled with a single Beta distribution (green
posteriors in Figure 5), μχ must be small in order to
accommodate events with small but finite spins. Events with
larger spins, meanwhile, can nominally be captured with a large
σχ. However, σχ cannot be large when μχ is small, as seen by
the prior cut in Figure 6. The introduction of a zero-spin
“spike” relieves this tension (even if no such spike is actually
present in the data). Small-spin events can now be captured by
the spike, allowing the Beta distribution to shift to higher μχ
and σχ to accommodate higher-spin events. This phenomenon
can also be seen in the correlation, noted above, between fspike
and μχ: the spin magnitude distribution is best described either
as a single Beta distribution that peaks at low values (small
fspike and μχ), or a “spike” combined with a Beta distribution
that peaks at higher values (large fspike and μχ). The
combination of these two effects yields a smooth spin
magnitude distribution that does not exhibit distinct subpopula-
tions. This discussion suggests that a Beta distribution might be
a suboptimal model for spin magnitudes going forward.

The observed presence or absence of a distinct zero-spin
subpopulation, rapidly spinning black holes, and/or signifi-
cantly misaligned black hole spins would all carry considerable
theoretical implications for the formation channels and
astrophysical processes driving compact binary evolution. At
the same time, hierarchical inference of the compact binary
spin distribution is technically difficult, relying on a large
number of highly uncertain measurements that are themselves
finitely sampled. When drawing observational conclusions
about the nature of compact binary spins, ensuring that results
are reproducible under different complementary approaches
can help mitigate these concerns and determine which
conclusions are driven by priors, which by modeling
systematics, and which by the data itself.

It certainly remains possible that the binary black hole
mergers witnessed by Advanced LIGO and Virgo contain
subpopulations of nonspinning and/or nearly aligned binaries,
but this scenario is not presently required by gravitational-wave
observations. If such subpopulations were to appear in an
analysis of future data, they could be taken as evidence toward
the hypothesis that merging black holes are born in the stellar
field, with spins acquired primarily through tidal spin-

up (Belczynski et al. 2021; Galaudage et al. 2021; Olejak &
Belczynski 2021; Mandel & Farmer 2022; Shao & Li 2022;
Stevenson 2022). Such astrophysical conclusions are cur-
rently unsupported by the data, however. Further detections
made in the upcoming O4 observation run and beyond will
shine further light on the nature of compact binary spins and,
consequently, the evolutionary origin of the black hole
mergers we see today.
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Data & Code Availability

The code used to produce the results of this study is available
via Github (https://github.com/tcallister/gwtc3-spin-studies)
and a copy is available on Zenodo (Callister & Miller 2022).
Our data, meanwhile, can be obtained on Zenodo: https://doi.
org/10.5281/zenodo.6555145.

Appendix A
Spin Population Models

We employ two broad categories of parameterized models
for the black hole spins: models on the effective spin
parameters and models on the spin components. A summary
of all models, their corresponding parameters, and their priors
is presented in Tables 2 and 3. All component spin models
ignore the azimuthal spin angles, assuming they are distributed
according to the uniform prior used during the original
parameter estimation (Abbott et al. 2021c). As measurements
of compact binary spins and mass ratios are generally
correlated, we hierarchically measure the distribution of binary
mass ratios alongside spins, assuming that the secondary mass
distribution follows

p m m m m m m , A12 1 2 min 2 1
q( ∣ ) ( ) ( )µ
b  
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and inferring the power-law index βq. We adopt a Gaussian
prior N(0, 3) on βq. The distributions of primary masses and
redshifts, in contrast, have a negligible impact on conclusions
regarding spin. We assume that primary masses follow the
PowerLaw+Peak model (Talbot & Thrane 2018), with

parameters fixed to their (one-dimensional) median values as
inferred in Abbott et al. (2021b). Following the notation
of Abbott et al. (2021b), we take α= 3.5, m 5.0min = ,
m 88.2max = , λpeak= 0.03, μm= 33.6, σm= 4.7, and
δm= 4.9. Meanwhile, we assume that the source-frame binary

Table 2
Summary of Effective Spin Models We Employ, Including Their Names, an Example p(χeff) Plot, Parameters, Priors, and Comments

Model Name p(χeff) Parameter Prior Comments

Gaussian
μeff U(−1,1)

Simplest Gaussian model
σeff LU(0.01,1)

GaussianSpike

μeff U(−1,1)
Mixture of a Gaussian “bulk” with a distinct “spike” subpopulation of nonspinning

systems
σeff LU(0.01,1)
ζspike U(0,1)
ò δ(0)

BimodalGaussian

μeff,a U(−1,1)
Mixture of two Gaussians with variable means and widthsμeff,b U( − 1, 1)

σeff,a LU(0.01,1)
σeff,b LU(0.01,1)
ζa U(0.5,1)

Note. x xU ,min max( ) denotes a uniform prior between xmin and xmax, x xLU ,min max( ) signifies a log-uniform prior across the same bounds, and δ(0) a delta function prior
at zero.

Table 3
Summary of Component Spin Models We Employ, Including Their Names, an Example χ and cos q Plot, Parameters, Priors, and Comments

Model Name p(χ) p cos( )q Parameter Prior Comments

Beta+Mixture

μχ U(0,1)

Simplest component spin model; additional prior require-
ment that α, β > 1, see Equation (A7)

σχ U(0.07,0.5)
σt U(0.1,4)
fiso U(0,1)

Beta+TruncatedMixture

μχ U(0,1)

Introduces a truncation in the cos q distribution at some
minimum value (maximum misalignment angle)

σχ U(0.07,0.5)
σt U(0.1, 4)
fiso U(0,1)
zmin U(−1,1)

BetaSpike+Mixture

μχ U(0,1)

Spin-magnitude distribution modified to include Beta
distribution “bulk” and a finite-width “spike” at approxi-

mately zero spin

σχ U(0.07,0.5)
fspike U(0,1)
òspike U(0.03, 0.1)
σt U(0.1,4)
fiso U(0,1)

BetaSpike
+TruncatedMixture

μχ U(0,1)

Most complex component spin model; includes both the
multiple two-spin-magnitude subpopulations and the

truncation in the spin-tilt distribution

σχ U(0.07,0.5)
fspike U(0,1)
òspike U(0.03, 0.1)
σt U(0.1, 4)
fiso U(0,1)
zmin U(−1,1)

Note. x xU ,min max( ) denotes a uniform prior between xmin and xmax, while x xLU ,min max( ) signifies a log-uniform prior.
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black hole merger density rate evolves as

R z
dV

dz
z1 , A2c 2.7( ) ( ) ( )µ +

where dV

dz
c is the differential comoving volume per unit redshift.

A.1. Effective Spin Models

In this subsection, we list the various models considered
when exploring the distribution of effective inspiral spins
among binary black hole mergers. See Table 2 for illustrations
of each model, as well as the priors adopted for each parameter.

Gaussian. Our simplest model assumes effective inspiral
spins to be Gaussian-distributed with mean μeff and variance

eff
2s ,

p , , , A3eff eff eff 1,1 eff eff eff( ∣ ) ( ∣ ) ( )[ ]c m s c m s= -

where a b,[ ] denotes a Gaussian distribution truncated within
[a, b]. Our priors on μeff and σeff are listed in Table 2. This
model was proposed in Roulet & Zaldarriaga (2019) and Miller
et al. (2020) and has been employed and extended in Abbott
et al. (2021a, 2021b), Callister et al. (2021b), Biscoveanu et al.
(2022), and Bavera et al. (2022).

GaussianSpike. To initially assess the prevalence of
identically nonspinning black holes, we extend the Gaussian
model to include a narrow “spike” centered at χeff= 0 with
width ò= 1,

A4

p , , , 0,

1 , .
eff spike eff eff spike 1,1 eff

spike 1,1 eff eff eff

( )

( ∣ ) ( ∣ )

( ) ( ∣ )
[ ]

[ ]

c z m s z c

z c m s

=

+ -
-

-

 



The fraction of binary black holes comprising the zero-spin
spike is given by ζspike. A similar model was studied by Abbott
et al. (2021b), who imparted a finite width to the zero-spin
spike population. In this work, we fix ò= 0 following the
modeling choice of Galaudage et al. (2021), leveraging the
kernel density estimation trick discussed in Appendix E to
accurately and stably evaluate the likelihood for this delta-
function spike.

BimodalGaussian. Given the inferred absence of a
zero-width spike with GaussianSpike, we introduce this
model to more generally assess any potential multimodality.
We model the distribution of χeff as a mixture of two Gaussians
with arbitrary means and standard deviations:

A5

p , , , , ,

1 ,
a a a b b a a a

a b b

eff eff, eff, eff, eff, 1,1 eff eff, eff,

1,1 eff eff, eff,

( )

( ∣ ) ( ∣ )
( ) ( ∣

[ ]

[ ]

c z m s m s z c m s

z c m s

=

+ -
-

-





The mixing fraction ζa is constrained to be �0.5, solving the
“label-switching” problem by demanding that μeff,a and σeff,a
are the mean and standard deviation of the dominant
subcomponent. No further prior constraints are placed on
μeff,a and σeff,a or μeff,b and σeff,b.

A.2. Component Spin Models

We next list the various models used to study the distribution
of component spin magnitudes and orientations among binary
black holes. See Table 3 for illustrations and priors.
Beta+Mixture: In our simplest component spin model,

we assume that spin magnitudes are independently drawn from
identical Beta distributions,

p
c

,
1

,
, A6i

i i
1 1

( ∣ )
( )
( )

( )c a b
c c

a b
=

-a b- -

where c(α, β) normalizes the distribution to unity. The two
shape parameters α and β are constrained such that α, β> 1 to
ensure that the distribution is bounded. This choice of parameters
requires that p(χi= 0)= p(χi= 1)= 0, thus a priori assuming
that there are no systems with exactly vanishing spin. We sample
not in α and β directly but rather in the mean μχ and standard
deviation σχ of the Beta distribution. The shape parameters α

and β are calculated from μχ and σχ through

,

1 ,

1
1. A7

2

( )
( )

( )

a m n

b m n

n
m m

s

=

= -

=
-

-

c

c

c c

c

The region of the μχ and σχ parameter space excluded by
restriction α, β> 1 can be seen in Figure 6. The spin-tilt
distribution is a mixture between two components: a uniform
isotropic component and a preferentially aligned component,

p f
f

fcos ,
2

1 cos 1, .

A8

i t i tiso
iso

iso 1,1( ∣ ) ( ) ( ∣ )

( )

[ ]q s q s= + - -

Here, fiso is the fraction of events comprising the isotropic
subpopulation, while the second term is a half-Gaussian
peaking at cos 1q = . Each component spin tilt is indepen-
dently drawn from Equation (A8). A model of this form was
introduced in Talbot & Thrane (2017) and Wysocki et al.
(2019), with the restriction that both spin tilts together lie in
either the isotropic or the preferentially-aligned component,
and is referred to as the Default model in Abbott et al.
(2021a, 2021b), and Galaudage et al. (2021).
BetaSpike+Mixture. In order to assess the presence of

nonspinning black hole binaries, we emulate Galaudage et al.
(2021) and extend the Beta+Mixture model include a half-
Gaussian “spike” that peaks at χi= 0 but has a finite width òspike:

p f f

f
c

, , , 0,

1
1

,
.

A9

i i

i i

spike spike spike 0,1 spike

spike

1 1

( ∣ ) ( ∣ )

( )
( )
( )

( )

[ ]c a b c

c c

a b

=

+ -
-a b- -

 

A fraction fspike of the population falls in this (approximately)
zero-spin spike while 1− fspike lives in the bulk, parameterized
again by a Beta distribution. Unlike Galaudage et al. (2021), we
do not require both black holes in a given binary to occupy the
same subpopulation, but instead assume that component spins
are independently and identically drawn from Equation (A9).
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The spin tilt distribution is the same as that in the Beta
+Mixture model, given by Equation (A8).

Beta+TruncatedMixture. Further motivated by
Galaudage et al. (2021), we alternately extend the Beta
+Mixture model by instead modifying the cos q distribution,
augmenting it with a tunable lower truncation bound zmin:

p f
f

z
fcos ,

1
1

cos 1, , A10

i t

z i t

iso
iso

min
iso

,1min

( ∣ ) ( )

( ∣ ) ( )[ ]

q s

q s

=
-

+ -

+ 

with p cos 0i( )q = for zcos i minq  . The spin magnitude
distribution is the same as that in the Beta+Mixture model,
given in Equation (A6).

BetaSpike+TruncatedMixture. Finally, we con-
sider both extensions together, incorporating both the (finite-
width) zero-spin subpopulation in Equation (A9) and the
truncated spin tilt distribution in Equation (A10).

Appendix B
Hierarchical Inference and Data Analyzed

In this appendix, we briefly describe our hierarchical
inference framework as well as the exact data we use in this
study. Given a catalog of gravitational-wave events with data
di i

N
1

obs{ } = , the likelihood that such events arise from a population
with parameters Λ is (Loredo 2004; Fishbach et al. 2018;
Mandel et al. 2019; Vitale et al. 2020)

p d d p d p , B1N

i
i i i iobs({ }∣ ) ( ) ( ∣ ) ( ∣ ) ( )òx l l lL µ L L-

where λi denotes the parameters (masses, spins, etc.) of each
individual binary, and we have marginalized over the overall rate
of binary mergers assuming a logarithmically-uniform prior. The
detection efficiency ξ(Λ) is the fraction of events that we expect
to successfully detect given the proposed population Λ. If
Pdetection(λ) is the probability that an event with parameters λ is
successfully recovered by detection pipelines, then

d p P . B2detection( ) ( ∣ ) ( ) ( )òx l l lL = L

In order to evaluate Equation (B1), we require the likelihood
p(di|λi) for each detection. In most cases, however, we do not
have access to these likelihoods, but rather the posterior p(λi|di)
obtained using some default prior ppe(λ). In this case, we
rewrite Equation (B1) as

p d d
p d

p
p . B3N

i
i

i i

i
i

pe

obs({ }∣ ) ( ) ( ∣ )
( )

( ∣ ) ( )òx l
l
l

lL µ L L-

Furthermore, we generally do not know p(λi|di) itself, but
instead have a discrete set of independent samples i j j

N
, 1

i{ }l =
drawn from p(λi|di), where Ni is the number of posterior
samples used for event i. The standard course of action is to
approximate the integral within Equation (B3) via a Monte
Carlo average over these posterior samples,

p d
N

p

p

1
. B4N

i i j

N
i j

i j1

,

pe ,

i
obs({ }∣ ) ( )

( ∣ )
( )

( ) åx
l
l

L µ L
L-

=

We can similarly recast the detection efficiency (Equation (B2))
as a Monte Carlo average. Given a number Ninj of injected
signals drawn from some reference distribution pinj(λ), the

detection efficiency may be approximated via

N

p

p

1
, B5

i

N
i

iinj 1 inj

found

( ) ( ∣ )
( )

( )åx
l
l

L =
L

=

summing over the Nfound injections that pass our detection
criteria.
The fundamental assumption made in Equations (B4) and

(B5) is that posterior samples (and recovered injections) are
sufficiently dense relative to the population features of interest.
In this paper, however, we are concerned with very narrow
features in the binary black hole spin distribution: Gaussians of
width ò= 1 or even true delta functions. We cannot therefore
be automatically assured that Equations (B4) and (B5) will
accurately represent our likelihood and detection efficiency. In
Appendix D we will further assess the accuracy of these Monte
Carlo averages, and in Appendix E describe how to bypass
them completely.
For this study, we consider the subset of black holes among

GWTC-3 with false-alarm rates below 1 yr−1 (Abbott et al.
2021d). We do not include GW190814 (Abbott et al. 2020b) or
GW190917 (Abbott et al. 2021e), both of which have secondary
masses m2< 3Me and are outliers with respect to the binary
black hole population (Abbott et al. 2021a, 2021b). This leaves
us with a total of 69 binary black holes in our sample. We use
parameter estimation samples made publicly available through
the Gravitational-Wave Open Science Center10 (Vallisneri et al.
2015; Abbott et al. 2021f). For events first published in

GWTC-111 (Abbott et al. 2019b), we use the “Over-
all_posterior” parameter estimation samples. We adopt
the “PrecessingSpinIMRHM” samples for events first
published in GWTC-212 (Abbott et al. 2021c) and GWTC-
2.113 (Abbott et al. 2021e), and for new events in GWTC-
3 (Abbott et al. 2021d) use the “C01:Mixed” samples.14

These choices correspond to a union of samples obtained with
different waveform families. All samples include spin preces-
sion effects, while the PrecessingSpinIMRHM and C01:
Mixed samples from GWTC-2, GWTC-2.1, and GWTC-3
additionally include the effects of higher-order modes (para-
meter estimation accounting for higher-order modes was not
available in GWTC-1). We evaluate the detection efficiency
using the set of successfully recovered binary black hole
injections, provided by the LIGO–Virgo–KAGRA collabora-
tions, spanning their first three observing runs.15

Appendix C
Model Checking

In order to trust physical conclusions drawn from phenom-
enological models, we must be sure that the models themselves
provide a reasonable fit to observation. A particularly powerful
means of model checking is to perform predictive tests:
comparing the predictions made by a fitted model to our actual
observed data. In this section, we subject each of the effective

10 https://www.gw-openscience.org/
11 GWTC-1 samples available at https://dcc.ligo.org/LIGO-P1800370/
public.
12 GWTC-2 samples available at https://dcc.ligo.org/LIGO-P2000223/
public.
13 GWTC-2.1 samples available at https://zenodo.org/record/5117703.
14 GWTC-3 samples available at https://zenodo.org/record/5546663.
15 https://zenodo.org/record/5636816
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and component spin models used in this paper to such
predictive tests.

Figure 8 compares predicted and observed χeff values under the
Gaussian, GaussianSpike, and BimodalGaussian
models explored in Section 4. The ensemble of traces in each
panel reflects the uncertainties in the hyperparameters of each

model, as well as our uncertainties in the observed properties of
each event. Specifically, these figures are generated via the
following algorithm:

1. Perform hierarchical inference using the model in
question, as described in Appendix B, to obtain posteriors
on the hyperparameters Λ of the model.

Figure 8. Predictive checks of the three effective spin models explored in Section 4. Under each model, we repeatedly generate sets of “Observed” χeff values drawn
from our binary black hole observations, and sets of “Predicted” values according to the fitted models; see Appendix C for further details. Each trace among the three
subplots represents one such realization, with the spread among traces reflecting both our uncertainty in the properties of each observed binary as well as the
uncertainty in model hyperparameters. A model that provides a good fit to observation will yield an ensemble of traces centered symmetrically around the diagonal,
whereas any systematic departure from the diagonal would indicate model failure. No such departures are seen, and so all three effective spin models are able to
successfully reproduce observation.

Figure 9. As in Figure 8 above, but for the component spin models studied in Section 5. We explore each model’s ability to predict the observed spin magnitudes (first
and second columns), spin tilts (third and fourth columns), and effective spins (fifth column). Again, we see no clear departures from the diagonal, such that none of
the four models can be rejected as a poor descriptor of our data. The Beta+Mixture and BetaSpike+Mixture models may exhibit slight tension with
observation, possibly overpredicting the occurrence of very negative cos 1q and χeff, but additional data are required to confirm the significance of this tendency.
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2. From the posterior on Λ, draw a single hyperparameter
sample Λi.

3. Use this Λi to define a new prior p(λ|Λi) on the properties
of individual events. Reweight the posterior of each
observed binary to this new prior, as in e.g., Miller et al.
(2020), and randomly select a single sample λj from each
event. The resulting set {λ}obs constitutes one realization
of “observed” values.16

4. Similarly, reweight the set of successfully found injec-
tions described above to the proposed prior p(λ|Λi).
Randomly select Nobs values from these injections; the
resulting set {λ}inj is one realization of “predicted”
values. Drawing predicted values from found injections,
rather than directly from the proposed population Λi,
serves to accurately capture relevant selection effects.

5. Independently sort {λ}obs and {λ}inj and plot them
against one another, yielding a single “Observed versus
Predicted” trace as in Figure 8.

6. Repeat Steps 1–4.

A model that accurately captures features in our observed data
will yield an ensemble of traces centered on the
Predictedχeff=Observedχeff diagonal, shown as a dashed black
line. Systematic departures away from the diagonal, on the other
hand, would indicate a failure of the fitted model to reflect true
features in the data. All three effective spin models show good
predictive power in Figure 8, yielding traces distributed
symmetrically about the diagonal. Note that the large variance
in the BimodalGaussian results reflects our correspondingly
large uncertainty about the χeff distribution at very negative and
very positive values. The elevated variance is symmetric about the
diagonal, though, and so is not a sign of model failure.

Figure 9 shows analogous predictive checks using the four
component spin models explored in Section 5. We investigate
each model’s ability to predict observed spin magnitudes (first
and second columns), spin tilts (third and fourth columns),
and effective spins (final column). Each model shows good
predictive power, with no significant departures from the
diagonal that would indicate model failure. The Beta
+Mixture and BetaSpike+Mixture models, though,
may show slight signs of tension in their ability to predict
cos 1q and χeff. For each model, 70% of traces lie above the
diagonal at Predicted cos 1q = −0.5, possibly indicating a
tendency to overpredict the occurrence of large and negative
cos q values. Accordingly, both models slightly overpredict
the prevalence of large negative χeff, with ∼75% of traces
rising above the diagonal at Predicted χeff=−0.2. This
behavior is consistent with the preference for a truncation at
zmin » −0.5 found using the Beta+TruncatedMixture
and BetaSpike+TruncatedMixture models. These
tendencies are slight, however, and so cannot yet be taken
as an indicator of model failure; more data will be required to
better resolve the underlying spin distributions and determine
which (if any) models can no longer provide a good descriptor
of observation.

Appendix D
Effective Samples

In order to identify and mitigate possible issues due to such
finite sampling effects when estimating Equation (B4), we track

the number of “effective samples” informing the Monte Carlo
estimates of the likelihood for every event. Given a set of Ni

posterior samples i j j
N

, 1
i{ }l = for each event i, the number of

“effective samples” under a proposed population Λ is
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where wi,j(Λ)= p(λi,j|Λ)/ppe(λi,j). Small Neff,i(Λ) indicates that
the given event is sparsely sampled in the region where the
population p(λ|Λ) is concentrated, and hence the likelihood
may be dominated by sampling variance. In these regions, we
should not necessarily trust the results of Monte-Carlo-based
hierarchical inference. To avoid such regions, Abbott et al.
(2021b) impose a data-dependent prior cut, rejecting those Λ

for which Nmin ieff,[ ( )]L falls below some threshold value. We
avoid imposing such a cut, which amounts to an implicit (and
often stringent) prior on Λ. Instead, we compute and track

Nmin ieff,[ ( )]L for each component spin population model we
consider. Additionally, for models with distinct “spike” and
“bulk” spin subpopulations (i.e., the half-Gaussian at zero and
the Beta distribution, respectively), we track the minimum
effective sample count within each of these subpopulations.
Our primary concern in tracking Neff is to calibrate the allowed

width òspike of a possible zero-spin spike in the component spin
distribution. Due to finite sampling effects, we cannot let this
spike width be arbitrarily small, but must bound òspike to
sufficiently large values to ensure reasonable Neff. Essick & Farr
(2022) argue that Neff∼ 10 per event is sufficiently high to ensure
accurate marginalization over each event’s parameters. Figure 10
illustrates how Nmin ieff,[ ] varies as a function of òspike; each point
represents a posterior sample drawn from the BetaSpike
+TruncatedMixture results in Figure 6. The left panel
shows Neff as computed across the full spin distribution, while the
center panel shows the effective sample count taken just over the
“bulk” Beta distribution (via fixing fspike= 0 when computing
Equation (D1)). The effective sample counts across the
total population and in the bulk are largely uncorrelated
with òspike> 0.03 and are everywhere large, with Nmin 10eff  .
The right panel of Figure 10, meanwhile, shows the number of

effective samples contained in the zero-spin spike (obtained by
fixing fspike= 1 in Equation (D1)). The number of effective
samples in the spike is extremely correlated with òspike. This is
expected, as a wider spike will encompass more posterior samples
and thus have a larger Nmin ieff,[ ]. The blue points show

Nmin ieff,[ ] taken across all events. This minimum sample count
is unacceptably low (Essick & Farr 2022), with every population
sample yielding at least one binary with only ∼1 effective sample.
However, we argue that this is not in fact concerning.17 The events
with a very low number of effective samples in the spike are
the same events that are unambiguously spinning and hence
confidently belong in the bulk and not the spike. Their
extremely low number of effective samples in the spike,
therefore, does not affect inference. The left-hand panel in
Figure 11 illustrates the component spin magnitude posterior
for one such “confidently spinning” event that unambiguously

16 Note that reweighting single-event posteriors following Steps 1 and 2 avoids
any “double counting” of information (Callister 2021).

17 If one wishes to avoid this argument altogether, the alternative method
discussed in Appendix E and used to infer the binary χeff distribution is
accurate in the presence of narrow population features, producing results that
agree with those discussed in this section.
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rules out χ1= χ2= 0. The red dots in Figure 10 show the
minimum effective sample count if we now exclude these
confidently spinning events (GW190517, GW190412,
GW151226, and GW191204, specifically). This minimum
count still contains events that are likely (but not necessarily
unambiguously) nonspinning, such as the event shown in the
center panel of Figure 11. The most critical measure of stability is
whether Neff is large for events such as GW150914 (right panel of
Figure 11) whose posteriors are finite up to and including
χ1=χ2= 0. The green points in Figure 10, therefore, show the
minimum sample count when we further exclude “likely
nonspinning” events, defined as any event with less than 1/200
of its samples in the region χ1, χ2< 0.1. The minimum number

of effective samples across remaining events now rises to ∼5 at
òspike= 0.03 and 10 at òspike= 0.04. Given this, we choose to
limit òspike� 0.03, and caution that the region òspike< 0.04 may
be subject to increased Monte Carlo averaging error.

Appendix E
Avoiding Samples with Likelihood KDEs

Our ordinary population likelihood, Equation (B4), relies on
Monte Carlo averages over posterior samples, an approach that
can behave poorly when evaluating narrow population features
as described above. Within the GaussianSpike effective
spin model, for example, in the limit that ò→ 0 there will be

Figure 10. Scatter plot of the minimum (across events) number of effective samples Nmin ieff,[ ] and the width of the zero-spin spike òspike for the BetaSpike
+TruncatedMixture model. Each point represents a single draw from the posterior shown in Figure 6. Left panel: the minimum number of effective samples as
computed across the entire population model. Middle panel: the minimum number of effective samples in the “bulk” (Beta distribution) spin magnitude
subpopulation.. Right panel: the minimum number of effective samples in the “spike” (zero-spin half-Gaussian) spin magnitude subpopulation. Dashed vertical lines
denote òspike = 0.03, the lower limit we impose on this parameter in our prior. Although the minimum sample count in the spike appears unacceptably low, the
minimum is driven by events that are confidently spinning and which therefore do not impact our inference regarding the zero-spin spike (see the left panel of
Figure 11). Red points illustrate the minimum effective samples when excluding events these events that are confidently spinning. Green points show the minimum
effective sample count if we further exclude events that are “likely” spinning (e.g., middle panel of Figure 11), focusing only on those events that are well described by
zero spin. To ensure a reasonable number of effective samples among these remaining events, we bound òspike > 0.03 and note that the region òspike  0.04 may be
subject to elevated Monte Carlo variance.

Figure 11. Spin magnitude posterior samples demonstrating the three classes of events discussed in Figure 10 above. The left-hand panel illustrates a confidently
spinning binary, which is clearly identified as a member of the spinning “bulk” population and whose low effective sample count in the spike is therefore unimportant.
The middle panel illustrates a “likely” spinning event, defined by having less than a fraction 1/200 of its posterior samples in the region χ1, χ2 < 0.1. The right panel,
finally, shows an event belonging to neither category; these remaining events are used to generate the green points in Figure 10 above.
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precisely no posterior samples falling in the zero-spin spike, and hence we will be unable to precisely evaluate the model’s
likelihood. This limitation is not physical, but purely due to our representation of each event’s posterior as a set of discrete samples.
As an alternative approach, we can abandon samples altogether and instead represent the likelihoods of individual events as Gaussian
KDEs. This alternative representation remains well behaved even when the population features of interest are narrow, provided that
there are enough samples in the neighborhood of the narrow feature to estimate the KDE.

For convenience, let l̃ represent all individual-event parameters except χeff. Under the discrete sample representation, the ordinary
Monte Carlo average in Equation (B4) is obtained by identifying individual events’ likelihoods p d ,i i ieff,( ∣ ˜ )l c as a sum of delta

functions located at each posterior sample j:

p d
N p

,
1

,
. E1i i i

i j

N
i i j i i j

i j i j
eff,

1

, eff, eff, ,

pe , eff, ,

i

( ∣ ˜ )
( ˜ ˜ ) ( )

( ˜ )
( )ål c

d l l d c c

l c
µ

- -

=

In the KDE approach, we impart a finite “resolution” to each posterior sample, replacing the delta functions with Gaussians of width
σkde:
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Equation (E2) is now a continuous function of χeff,i and hence allows us to evaluate the likelihood of a population with arbitrarily
narrow features. This comes at a cost. As shown in Equation (B1), evaluation of a population likelihood requires evaluation of the
integral d d p d p, ,ieff eff eff

˜ ( ∣ ˜ ) ( ˜ ∣ )ò l c l c l c L . This integration is trivial when the likelihoods are composed purely of delta functions,

as in Equation (E1), but not necessarily straightforward using Equation (E2).
Fortunately, both the individual-event likelihoods p d ,i i ieff,( ∣ ˜ )l c and our population models p , eff( ˜ ∣ )l c L are mixtures of

Gaussians in χeff, and so we can analytically carry out the required integration over χeff. For the GaussianSpike model, for
example, the result is
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In an exactly analogous fashion, when computing the detection efficiency ξ (Λ) we can replace a Monte Carlo average over
successfully found injections [as in Equation (B5)] with a KDE over injections:
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As above, the integration can be carried out analytically when (as in our case) the population model p(χeff|Λ) is a mixture of
Gaussians.

As a demonstration and validation of this approach, we revisit inference of the GWTC-3 effective spin distribution via the
GaussianSpike model, but now fix the “spike” at χeff= 0 to have a finite width ò> 0. We repeat the analysis in two ways: (i)
using the ordinary Monte Carlo representation of Equations (B4) and (B5), and (ii) using the KDE representation of Equations (E3)
and (E6). Figure 12 shows the marginal posterior for ζspike for different choices of ò. When ò is large
(i.e., the “spike” is broad compared to the typical intersample spacing), the two methods give identical results. As we let ò
approach zero, however, the Monte Carlo average produces divergent results, while the KDE likelihood representation yields stable
and converging posteriors.
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Appendix F
Mock Injection Campaign

In Figure 3 in the main text, we showed posteriors on ζspike
obtained by analyzing mock catalogs of binary black holes
drawn from an intrinsically spikeless population. In this
appendix, we describe our procedure for generating and
analyzing these mock catalogs.

To generate mock χeff measurements, we assume an
underlying astrophysical distribution following the Gaussian
effective spin model, with mean μeff= 0.06 and standard
deviation σeff= 0.09. These values are chosen to match the
median measurements of μeff and σeff obtained when
hierarchically analyzing GWTC-3 with the Gaussian
effective spin model. For each mock catalog, we draw 69

“true” spin values from this Gaussian population:

N 0.06, 0.09 . F1eff,true ( ) ( )c ~

We then add a random measurement uncertainty to each mock
event. Assuming Gaussian likelihoods for each χeff measurement,
“observed” maximum-likelihood values are generated via

N , , F2eff,obs eff,true obs( ) ( )c c s~

where σobs is the standard deviation of each event’s likelihood.
These uncertainties are themselves randomly distributed to
match the range of uncertainties exhibited by real measure-
ments. The χeff likelihoods among binary black holes in
GWTC-3 have log standard deviations that are approximately
normally distributed, with a mean log10 obss of −0.9 and a
standard deviation of 0.3. When drawing mock observed values
in Equation (F2), we therefore assign each event a random
measurement uncertainty according to

Nlog 0.9, 0.3 . F310 obs ( ) ( )s ~ -

Because both our population model and our mock likelihoods
are Gaussian, the hierarchical likelihood for μeff and σeff can be
calculated analytically, exactly as was done in Appendix E
above. Specifically, the likelihood p({d}|μeff, σeff) of our mock
catalog is of the same form as Equation (E3), with the observed
χeff,obs values in place of χeff,i,j, the measurement uncertainties
σobs in place of ò, and ignoring the summation over j.
As highlighted in Section 4, many of our mock catalogs

exhibit ζspike posteriors qualitatively similar to the posterior
obtained using real data, encompassing zero but peaking at
ζspike≈ 0.5. Some mock catalogs even more confidently (and
incorrectly) appear to rule out the injected value of ζspike= 0.
We find that this elevated “false-alarm probability” can be
explained by a degeneracy between ζspike and μeff that occurs
when analyzing relatively small number of individually
uncertain measurements. To illustrate this behavior, we choose
the mock catalog whose ζspike posterior most strongly rules out
zero in Figure 3. The left-hand panel in Figure 13 shows the
joint posterior on ζspike and μeff given by this catalog. These
parameters are correlated: if the Gaussian “bulk” is shifted to a
larger mean, events located at negative or near-zero χeff values
are left behind and must be absorbed into the zero-spin spike.
To test this intuition, we show in the middle panel of Figure 13
the individual likelihoods that comprise this mock catalog. The
event with the largest χeff (and hence the event pulling μeff to
large values) is highlighted. If we remove this high-spin event
and redo the hierarchical inference on this catalog, we obtain
the blue ζspike posterior shown in the right-hand panel of
Figure 13. After removing the high-spin event, we now find
ζspike to be considerably more consistent with zero.

Appendix G
Bayes Factors through the Savage–Dickey Density Ratio

Our initial counting experiment in Section 3 uses only the
Bayes factors for each event in GWTC-2 between the

Figure 12. Validation of the KDE likelihood approach discussed in
Appendix E. Each subplot shows the marginalized posterior for the fraction
of events contained within a narrow spike at χeff = 0. Solid lines show
posteriors computed using the KDE method, while dashed lines show
posteriors obtained using ordinary Monte Carlo averaging (Appendix B).
Results are shown for a variety of spike widths, from broad spikes with
standard deviation ò = 0.03 to narrow spikes with ò = 10−4. We see that the
KDE method yields consistent and convergent results as ò approaches zero,
while the Monte Carlo averaging gives increasingly divergent results for small
spike widths due to growing Monte Carlo errors.
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nonspinning (χ1= χ2= 0) and spinning (χ1, χ2� 0) hypoth-
eses. Such Bayes factors also act as inputs in the analysis of
Galaudage et al. (2021). Galaudage et al. (2021) form Bayes
factors via the ratios of fully marginalized likelihoods
computed for each event via nested sampling under nonspin-
ning and spinning priors (Abbott et al. 2021c; Kimball et al.
2021). Instead, we compute Bayes factors directly from the
posterior samples for each event. For nested models where the
simpler model (e.g., the nonspinning model) is contained
within a more complex model (the spinning model with
χ1= χ2= 0), the Bayes factor between models is
given through the Savage–Dickey density ratio (Verdinelli &
Wasserman 1995),

p d
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where p(χ1= 0, χ2= 0|d) and p(χ1= 0, χ2= 0) are the
posterior and prior densities at χ1= χ2= 0, respectively. See
Appendix B of Chatziioannou et al. (2014) for a proof of this
equation when the more complex model has additional
parameters (here, the spin angles) that are absent from the

simpler model. For every binary black hole in GWTC-2, the
left panel of Figure 14 shows the probability that the event is
nonspinning,
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as implied by both sets of Bayes factors. We find general
agreement, within numerical uncertainties, between our Bayes
factors computed via Savage–Dickey density ratios and those
computed via nested sampling (Abbott et al. 2021c). We note
that Savage–Dickey density ratios, which rely on KDEs over
posterior samples, may be less reliable for events with very
little support at (χ1= 0, χ2= 0). In these cases, however, a
Savage–Dickey density ratio would still conclude that pNS→ 0
consistently.
There are two significant outliers, however. Nested sampling

returns 130S
NS ~ in favor of the nonspinning hypothesis for

Figure 14. Left panel: the probabilities pNS for each binary black hole in GWTC-2 to be nonspinning, as computed in two different ways: through a Savage–Dickey
density ratio and using fully marginalized likelihoods computed via nested sampling and reported in Abbott et al. (2021c). The circles denote GW190408_181802 and
GW190828_063405, whose nested sampling results appear to be outliers. Center panel: the spin magnitude posterior for GW190408_181802. Nested sampling yields
a Bayes factor of 130S

NS ~ in favor of the hypothesis that this event is nonspinning. This would require the spin magnitude posterior to be ∼130 times larger than the
(flat) prior at χ1 = χ2 = 0. This is inconsistent, though, with the true posterior on the spin magnitudes of GW190408_181802, suggesting that the nested sampling
Bayes factor in favor of the nonspinning hypothesis is significantly overestimated. Right panel: as a consistency check, we repeat the counting experiment from
Section 3 using the nested sampling Bayes factors serving as input to Galaudage et al. (2021), rather than our Savage–Dickey estimates. We show posteriors obtained
using the entire GWTC-2 catalog (solid blue curve) and results after excluding GW190408_181802 from our sample (dashed blue). As mentioned in Section 3, we
obtain much closer agreement with the Savage–Dickey result (gray curve) after excluding GW190408_181802.

Figure 13. Follow-up exploration of the injected mock catalog that most strongly (and incorrectly) excludes ζspike = 0 in Figure 3. Left: the joint posterior on ζspike and μeff
from the selected catalog. In general, we find significant correlations between ζspike and the mean μeff of the spinning “bulk” population. Mock catalogs that most strongly
disfavor ζspike = 0 are generally those that have the largest inferred μeff. Middle: the individual events comprising the selected catalog. The event with the largest measured χeff

(and hence the event that most strongly influences μeff) is highlighted. Right: the solid blue curve shows the updated ζspike posterior after removing the highlighted high-spin
event. Compared to the original ζspike measurement (dashed black curve), the updated posterior is now more (correctly) consistent with ζspike = 0.
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the event GW190408_181802. If this Bayes factor were correct, then GW190408_181802 is almost certainly nonspinning,
guaranteeing that a nonzero number of events will be placed in a nonspinning subpopulation. This is indeed the conclusion drawn by
Galaudage et al. (2021) with the nested sampling Bayes factors. Such a large preference for vanishing spins is not supported by this
event’s spin magnitude posteriors (right panel); it would require that the posterior is ∼130 times larger than the prior at
(χ1= χ2= 0). A Savage–Dickey density ratio instead gives an agnostic 1.6S

NS » for GW190408_181802. The opposite situation is
encountered for GW190828_063405, which is reported to have 1.7 10S

NS 5~ ´ - from nested sampling. Inspection of the posterior
again shows that the posterior and the Bayes factor are inconsistent, as the former remains finite at χ1= χ2= 0. Although these two
outliers were identified by comparison of nested sampling and Savage–Dickey density ratio results, the conclusion that the nested
sampling Bayes factors are misestimated can be drawn through visual inspection of the posterior samples alone.

Appendix H
Different Catalogs and Model Variations

All results in Sections 4 and 5 of the main text rely on the latest GWTC-3 catalog of gravitational-wave detections(Abbott et al.
2021d), as detailed in Appendix B. However, the results of Galaudage et al. (2021) (to which we frequently compare) instead made
use of GWTC-2 (Abbott et al. 2021c), because GWTC-3 results were published only after their study. Moreover, our model differs
slightly from ours in how component spin magnitudes and tilt angle are paired. We assume that spin magnitudes χ1 and χ2 are
independently and identically distributed (IID), as are tilt angles cos 1q and cos 2q . In our BetaSpike+TruncatedMixture
model, for example, one component spin could lie in the zero-spin spike while its companion spin could lie in the Beta distribution
“bulk.” Galaudage et al. (2021), on the other hand, adopt preferential pairing and require that both component spins in a given binary
occupy the same mixture component (bulk or spike; aligned or isotropic). In order to enable a more direct comparison between our
results, in this appendix we show results obtained using only binary black holes among GWTC-2, as well as results generated with an
alternative pairing model that directly matches that of Galaudage et al. (2021).

Figure 15 illustrates the fraction of binary black holes inferred to be nonspinning using the GaussianSpike effective spin model
(see Sections 4 and A.1) and analyzing data from GWTC-2. Like our results with GWTC-3, results using only GWTC-2 are consistent
with ζspike= 0, indicating no evidence for a distinct subpopulation of nonspinning events. Similarly, Figure 16 shows results when
analyzing GWTC-2 binary black holes with the BetaSpike+TruncatedMixture component spin model. We again find consistent
results between GWTC-2 and GWTC-3 events. When analyzing only events in GWTC-2, we infer the fraction fspike of approximately
nonspinning systems to be consistent with zero and find no requirement for the width of this possible subpopulation to be narrow (small
òspike). Using GWTC-2, we also conclude that the distribution of spin–orbit misalignment angles extends beyond 90°, with the truncation
zmin on the cos q distribution inferred to be negative (97.1% credibility), although with slightly decreased certainty compared to GWTC-3
(99.7% credibility).

Finally, Figure 17 shows results obtained under an alternative version of our BetaSpike+TruncatedMixture model that
directly matches the pairing function used by Galaudage et al. (2021) in their Extended model. Explicitly, spin magnitudes are

Figure 15. The fraction of binary black holes among GWTC-2 (solid blue line; Abbott et al. 2021c) with χeff = 0, inferred using the GaussianSpike effective spin
model. For comparison, the dashed black curve shows the result obtained using GWTC-3 (Abbott et al. 2021d); this is the same result shown in Figure 3 in the main
text. Both results are consistent with one another, showing no evidence for a distinct subpopulation of events with χeff = 0, although the GWTC-3 result more strongly
favors ζspike = 0.
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Figure 16. Posterior on the parameters of the BetaSpike+TruncatedMicture component spin model, now using only GWTC-2 events (purple). The shaded
region in the μχ–σχ two-dimensional posterior is the region excluded by the prior cut on the shape parameters of the beta distribution α, β > 1. For reference, results
using the full GWTC-3 event list are shown in orange; the GWTC-3 result is identical to the one presented in Figure 6. We find broadly consistent results between the
two catalogs, including no requirement for a zero-spin subpopulation as well as a preference for spins misaligned by more than 90° relative to binaries’ Newtonian
orbital angular momentum.
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Figure 17 shows results from this alternative model using both
GWTC-2 and GWTC-3. For reference, the dashed black
distributions show results from our usual BetaSpike
+TruncatedMixture model. Compared to BetaSpike
+TruncatedMixture, the Extended model has more
support at fspike= 0, strengthening the conclusion that the
fraction of black holes with negligible spin is consistent with
zero. For the tilt angle distribution, we find that data still has a
strong preference for negative zmin under the Extended
model, but with decreased confidence (84.6% credibility for
GWTC-2 and 90.4%credibility for GWTC-3) compared with
BetaSpike+TruncatedMixture. Perhaps the starkest

difference between results generated with the Extended and
sBetaSpike+TruncatedMixture models is that under
Extended, the data even more strongly prefer isotropically
distributed tilt angles over aligned, as seen by the fiso peaking
strongly at unity. This again indicates no strong preference,
given current data, that black hole spins are collectively nearly
aligned with their orbital angular momenta.
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Figure 17. Posterior on the parameters of the Extended component spin model (Equations (H1) and (H2)) using GWTC-3 data (orange) and just GWTC-2 data
(purple). The one-dimensional marginalized posteriors for the BetaSpike+TruncatedMicture model for GWTC-3 are shown in black dashed lines for
comparison; this result is identical to that shown in Figures 6 and 16. The Extended model infers a population with smaller fspike and larger fiso than BetaSpike
+TruncatedMicture; it also has more support for z 0min > than BetaSpike+TruncatedMicture, although the zmin posterior peaks at a negative value for
both cases. The posteriors for the remaining population parameters are qualitatively similar between the two models.
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