
Measurement Science and
Technology

     

PAPER • OPEN ACCESS

Calibration of 3D scan trajectories for an industrial
computed tomography setup with 6-DOF object
manipulator system using a single sphere
To cite this article: Lorenz Butzhammer et al 2023 Meas. Sci. Technol. 34 015403

 

View the article online for updates and enhancements.

You may also like
Extrinsic calibration method for 3D
scanning system with four coplanar laser
profilers
Hangbo Zou, Renbo Xia, Jibin Zhao et al.

-

A multibody approach for 6-DOF flight
dynamics and stability analysis of the
hawkmoth Manduca sexta
Joong-Kwan Kim and Jae-Hung Han

-

Modeling and control of
magnetorheological 6-DOF stewart
platform based on multibody systems
transfer matrix method
Min Jiang, Xiaoting Rui, Wei Zhu et al.

-

This content was downloaded from IP address 202.8.112.201 on 15/06/2023 at 06:21

https://doi.org/10.1088/1361-6501/ac9856
/article/10.1088/1361-6501/ac9076
/article/10.1088/1361-6501/ac9076
/article/10.1088/1361-6501/ac9076
/article/10.1088/1748-3182/9/1/016011
/article/10.1088/1748-3182/9/1/016011
/article/10.1088/1748-3182/9/1/016011
/article/10.1088/1748-3182/9/1/016011
/article/10.1088/1361-665X/ab675a
/article/10.1088/1361-665X/ab675a
/article/10.1088/1361-665X/ab675a
/article/10.1088/1361-665X/ab675a


Measurement Science and Technology

Meas. Sci. Technol. 34 (2023) 015403 (16pp) https://doi.org/10.1088/1361-6501/ac9856

Calibration of 3D scan trajectories for an
industrial computed tomography setup
with 6-DOF object manipulator system
using a single sphere

Lorenz Butzhammer∗, Andreas Michael Müller and Tino Hausotte

Chair of Manufacturing Metrology, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Nägelsbachstraße 25, 91052 Erlangen, Germany

E-mail: Lorenz.Butzhammer@fmt.fau.de

Received 3 August 2022, revised 26 September 2022
Accepted for publication 7 October 2022
Published 28 October 2022

Abstract
In industrial x-ray computed tomography (CT), the application of more complex scan paths in
comparison to the typical circular trajectory (360◦ rotation of the measurement object) can
extend the potential of CT. One way to enable such 3D scan trajectories is to use a
6-degrees-of-freedom (DOF) object manipulator system. In our case, a hexapod is mounted on
top of the rotary table of a commercial CT scanner. This allows for adaptive tilting of the
measurement object during the scan. For high accuracy, the geometry calibration of such setups
is typically done using the x-ray projections of a calibrated multi-sphere object. Contrary to this,
here, we demonstrate a procedure that is based on only a single sphere and can therefore
experimentally be implemented with low effort. Using the intrinsic geometry parameters of the
CT device as prior information, the hexapod coordinate system with respect to the CT machine
coordinate system is determined by means of a one-step optimization approach. The resulting
parameters are used to calculate projection matrices that enable the volume reconstruction for
3D scan trajectories. The method is validated using simulated x-ray images and experimental
investigations including dimensional measurements. For the used setup, geometric measurement
results for 3D scan trajectories that are calibrated with the presented method show in sum
increased errors compared to the circular scans. A limited pose accuracy of the manipulator
system is discussed as a potential cause. The results nevertheless indicate that the presented
method is generally feasible for dimensional CT measurements provided that the pose accuracy
is sufficient. The calibration procedure can therefore be a low-cost and easier to implement
alternative compared to trajectory calibration methods based on multi-sphere objects, but with a
tendency towards lower measurement accuracy. The methodology can in principle be transferred
to different setups with 6-DOF manipulator systems, e.g. C-arm CT devices with a robot arm.
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1. Introduction

X-ray computed tomography (CT) is an established techno-
logy in the field of nondestructive testing and dimensionalmet-
rology. Cone-beam CT devices equipped with an x-ray tube, a
flat panel detector and a manipulator system including a rotary
table form the most widespread device class in an industrial
context [1]. Typically, a full 360◦ rotation of the measure-
ment object is performed by the rotary table during the scan.
Regarding the volume reconstruction as the most important
post-processing step, the object rotation can be handled the
same way as a rotation of the x-ray source and detector around
the object in the opposite direction. Therefore, the motion is
oftentimes described as a circular scan trajectory of the source,
in analogy to medical CT devices. Strictly speaking, the pos-
ition and orientation of the detector are additionally required
to fully describe the geometry of the scan trajectory.

In recent years, there is a trend towards extending scan
trajectories to task-specific, non-planar shapes, especially for
large measurement objects that are scanned with the help of
robot arms as manipulator systems for the x-ray tube and
detector [1–4]. Particularly with focus on such setups, there are
several publications dealing with different methods to optim-
ize 3D scan trajectories for industrial CT with regard to ima-
ging quality and measurement time [5–7].

3D scan trajectories could also be helpful for the measure-
ment of smaller objects if cone-beam artifacts or spatially dis-
tributed, high absorbing components lead to image degrada-
tion and high measurement errors in case of the circular scan
trajectory.

In a recent article [8], we showed that extending a commer-
cial cone-beam CT scanner with a hexapod as 6-degrees-of-
freedom (DOF) object manipulator is one possible technical
implementation. To reach high metrological accuracy, the tra-
jectory of the combined setup must be accurately determined.
In [8], the pose of the measurement object (or rather of a
coordinate system that is moved with the measurement object)
was directly extracted projection-wise by repeating the scan
with a multi-sphere object with calibrated sphere center pos-
itions. The projected sphere positions detected in the radio-
graphs were used for an optimization approach to extract the
geometry parameters, similar as in a standard CT geometry
calibration procedure [9], but keeping the intrinsic paramet-
ers of the CT device (such as the source-detector-distance)
fixed and only optimizing the pose of the reference object. This
way, the additional axes of the hexapod did not deteriorate the
dimensional measurement accuracy significantly.

The methodology was based on a theoretical background
that is also used for camera pose estimation in the field of
optical imaging, see e.g. [10]. In the field of CT, geometry

calibration with a multi-sphere object based on this back-
ground is well established and oftentimes used in the internal
calibration routines provided by the CT manufacturers. A
detailed implementation guide for a standard procedure using
only a single projection can be found in [9]. Bircher et al [11]
applied multi-sphere-based geometry calibration using differ-
ent magnifications to increase the accuracy for metrological
CT. Similar methods were used by Ferrucci et al [12], who
focused on determining sample stage error motions.

Multi-sphere calibration of 3D scan trajectories, as per-
formed in [8], shows high accuracy but also has some
drawbacks.

First, the sphere center positionsmust be known, which typ-
ically requires calibration with a tactile coordinate measuring
machine. Fabricating or purchasing a phantom as well as the
calibration can be expensive.

Second, care has to be taken to avoid or exclude overlapping
spheres and to assign the correct sphere to the corresponding
sphere projection in the x-ray images. This typically requires
increased efforts regarding the image processing. Kang et al
[13] addressed this problem by using uniquely identifiable col-
linear markers.

Third, as a calibration scan with a trajectory identical to the
measurement scans is needed, the calibration is comparably
time consuming and must be repeated if the scan trajectory is
modified.

All three mentioned problems can be avoided if a calibra-
tion procedure is established with only one spherical marker,
which could be at the expense of the achievable accuracy.
Blumensath et al [14] presented a calibration method that uses
one or several markers with unknown position. They used a
multi-step optimization approach to find the intrinsic paramet-
ers of the CT scanner as well as the alignment of the linear and
rotational manipulator axes. Amathematical description based
on vector calculus was used in their approach. The calibration
method however was not used for CT measurement tasks, but
applied and investigated for nondestructive testing by means
of computed laminography [15, 16].

In the following, we present a calibration procedure using
a single sphere, but with a slightly different optimization
approach that can be performed in a single step and is based
on a mathematical description using projection matrices. The
principle is to determine the placement of the additional
manipulator (i.e. to determine the hexapod base coordinate
system) with regard to the CT machine coordinate system
(defined by the rotation axis and principal ray). This is done
by setting various positions and orientation angles to the hexa-
pod and automatically tracking the corresponding sphere pos-
ition in the x-ray images. While keeping the intrinsic paramet-
ers of the CT device such as the source-detector-distance or
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the source-rotation axis-distance fixed (using the outcome of
the manufacturer’s internal calibration procedure), the six geo-
metric parameters of the pose of the hexapod base coordinate
system are then optimized, minimizing the reprojection error
between the estimated and measured detector coordinates of
the projected sphere center point. Once the hexapod base
coordinate system is found by the calibration method, the geo-
metry of any 3D scan trajectory can be calculated in form
of projection matrices and fed to the reconstruction software.
This enables the algebraic volume reconstruction of CT scans
with adaptive tilting of the measurement object.

It is important to note that in our approach, the required
intrinsic geometry parameters of the CT device itself are not
calibrated but used as prior information. For metrological CT
devices that are routinely calibrated, these parameters are typ-
ically available with high accuracy. This prior information has
already been used in [8]. It has been stated there that this led
to more reliable results than calibrating the complete geometry
parameter set of the combined system of CT device and addi-
tional object manipulator system.

In former work at our institute, a pose sequence applied
by a hexapod has already successfully been used for camera
calibration and sensor registration for an optical fringe meas-
urement system [17].

The CT calibration method presented here will be valid-
ated by means of simulation-based and experimental invest-
igations. Furthermore, the influence of the calibration method
not only on the reconstructed volume data but also on dimen-
sional measurement results for 3D scan trajectories is analyzed
and discussed. This allows for a judgment if themethod is prin-
cipally feasible for metrological tasks in terms of conformity
assessmentwith respect to the geometric product specification.

In the following section 2, we describe the used setup of
cone-beam CT scanner combined with the hexapod as manip-
ulator system. The concatenation of coordinate systems that
enables the calculation of projection matrices for different
combinations of the scan angle and the hexapod pose is out-
lined in section 3. The calibration procedure is presented in
section 4. In section 5, the method is validated in terms of
achievable accuracy and repeatability. The influence of the
calibration on dimensional measurements obtained with 3D
scan trajectories follows in section 6.

2. System setup and geometry definition

The combined setup of cone-beam CT scanner and hexapod
is shown in figure 1. The hexapod H-840.G2 (Physik Instru-
mente (PI) GmbH & Co. KG, Karlsruhe, Germany) is moun-
ted on top of the rotary table of the CT systemMetrotom 1500
G2 (Carl Zeiss Industrielle Messtechnik GmbH, Oberkochen,
Germany). The rotary table itself is mounted on a linear axis,
enabling different magnifications. The x-ray tube and detector
are mounted on a fixed frame. The source-detector-distance is
therefore constant. The pose of the hexapod top plate can be
set by three position values and three rotation angles. The sup-
plier specifies the repeatability with typical limits of ±0.5µm
and±12µrad.More details about the setup can be found in [8].
A 3D scan trajectory for a measurement scan can be achieved

by combining the rotation of the rotary table with scan angle
α with a translation and/or rotation of the hexapod top plate.

Following right-handed coordinate systems were defined
(also see figure 1(b)), which are later used in sections 3 and 4:
the source coordinate system S is located at the x-ray spot of
the tube. The orientation of S is chosen according to a wide-
spread convention. The z-axis is pointing towards the piercing
point (point where x-rays hit the detector with right angle).
The x- and y-axis are aligned with the detector columns/rows.
The world coordinate system W is located at the crossing of
the central ray (from source to piercing point) with the rota-
tion axis of the rotary table (assumed to be ideally aligned).
The orientation was chosen in a way to match the one from
the later used reconstruction software. While W stays fixed
in space, the coordinate system T follows the rotation of the
rotary table. It is defined in a way that it coincides withW for
a scan angle α= 0. Regarding the hexapod, a base coordin-
ate system H is defined at the zero position of the device. For
the orientation, the inherent axes of the device are used. The
location of the origin is defined by a set Pivot point, which
is adjusted to the respective measurement task. Once set, the
coordinate system H is fixed with regard to the bottom plate
of the hexapod.

A second coordinate system H̃ initially coincides with H,
but follows the transformation of the hexapod top plate (see
figure 2). H̃ is therefore fixed with regard to the top plate.
Finally, the 2D detector coordinate system D has its origin at
the center of the bottom left pixel with u- and v-axis aligned
with the pixel grid. In contrast to the 3D coordinate systems,
the coordinates u and v are dimensionless numbers represent-
ing multiples of the pixel side length.

3. Projection matrix calculation for hexapod CT
scans

The goal is to use a 6-DOF manipulator e.g. for adaptive tilt-
ing of the measurement object during a CT scan. This leads
to a 3D scan trajectory, which must be taken into account for
a proper reconstruction. The reconstruction software that we
use requires information about the 3D scan trajectory in form
of projection matrices. In the following, we outline how these
projection matrices can be calculated, using the prior inform-
ation of the CT device and the unknown parameters that will
be obtained using the calibration method in section 4.

For the theoretical background about projection matrices,
see e.g. [10]. In summary, by projection matrix multiplication,
the projection of a 3D point onto the detector (2D coordinates
inD) can be calculated. In our case, we are interested in projec-
tionmatrices that connect the points of themeasurement object
in its initial pose inW (with scan angleα= 0 and zero position
of the hexapod) to the projected points in the x-ray images.
Using such projection matrices, the location and orientation
of the volume pixel (voxel) grid after volume reconstruction is
identical to the one that is generated by the used reconstruction
software (see section 6.2) for a circular trajectory. This allows
a direct comparison of the results without registration.

Before we proceed with the concatenation of the introduced
coordinate systems to derive the projection matrix formula
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Figure 1. (a) Combined setup of cone-beam CT device and hexapod as object manipulator (small inset: In tilted state). (b) Sketch of the
setup with used coordinate systems. α is the scan angle of the rotary table (green).

Figure 2. Coordinate systems relating to the hexapod.H: base
coordinate system (defined by axes inherent to the hexapod and the
set Pivot point as origin), spatially fixed with regard to the bottom
plate. H̃: moved tool coordinate system after transformation of the
top plate, spatially fixed with regard to the top plate. H̃ coincides
withH if the hexapod is at the zero position.

for the investigated system, some remarks on the mathemat-
ical notation should be given. Positions and shifts are given
as 3D column vectors (except for the detector coordinate
system, where 2D vectors are used). Small, bold italic charac-
ters are used for vectors, with subscript indicating the coordin-
ate system the vector belongs to. A circumflex is used if the
vector is expressed in homogeneous coordinates, e.g. x̂W =
(xW⊺,1)⊺. A transformation between coordinate systems (see
also figure 3) is achieved by a 4× 4 transformation matrix T.
For a vector that is given in a coordinate systemA, the coordin-
ates in B are obtained by

x̂B = TABx̂A =

[
RAB tAB
0⊺ 1

]
x̂A

=


R1,1
AB R1,2

AB R1,3
AB t(1)AB

R2,1
AB R2,2

AB R2,3
AB t(2)AB

R3,1
AB R3,2

AB R3,3
AB t(3)AB

0 0 0 1



xA
yA
zA
1

 . (1)

In this equation, tAB is the shift between the coordinate
systems, i.e. the position of the origin of A in the coordinate
system B. RAB is the extrinsic rotation matrix describing the

Figure 3. Concatenation of coordinate systems used for the
projection matrix calculation for a measurement scan. While the
location of a point of the measurement object is constant with regard
to the hexapod top plate (xH̃), its location in the world coordinate
system (xW,j) depends on the varying transformations (TTW,j and
TH̃H,j, marked red) during the scan, set by the scan angle of the
rotary table and the hexapod pose for the jth projection.

orientational relation between the coordinate systems. See
appendix for the definition and the choice of the specific
rotation order we used throughout our investigations. The sym-
bols φx, φy and φz are used for rotation angles defining an ori-
entation in the following.

For the example of equation (1), the inverse coordinate
transformation is

x̂A = T−1
ABx̂B =

[
R−1
AB −R−1

ABtAB
0⊺ 1

]
x̂B,

where the inverse of the rotation matrix R−1
AB is identical to its

transposed R⊺
AB.

To be able to identify vectors or transformations in a
sequence of different poses, indices are appended in some
cases as second subscript to indicate the pose number. For the
scan trajectory of a measurement scan, we use j, while k is
used for the transformation sequence applied for the calibra-
tion procedure.

Using the introduced notation and considering the com-
bined movement by chaining the coordinate systems as indic-
ated in figure 3, a formula can be derived to determine where a
point of themeasurement object is projected on the detector for
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different poses of the measurement scan, i.e. for different scan
angles of the rotary table and poses of the hexapod. In figure 3,
transformations that are constant during a scan (TWS,THT) are
colored light gray and transformations that change for each
pose (TTW,j, TH̃H,j) are colored red.

A cone-beam projection is generally expressed by a 3× 4
projection matrix P. For coordinates in the source coordinate
system S , the projection matrix PS is only composed of an
intrinsic 3× 3 matrix K, which is termed camera calibration
matrix in optics, and the zero vector. For our definition of the
orientations of S and D from figure 1(b), we obtain

x̂D,j = PSx̂S,j = [K|0] x̂S,j

=

− dSD
pu

0 u0 0
0 dSD

pv
v0 0

0 0 1 0

 x̂S,j. (2)

In this equation, dSD is the source-detector-distance,
(pu,pv) is the pixel pitch (pixel side length) in u- and v-
direction, and (u0,v0)⊺ are the coordinates of the piercing
point in D. x̂D is a 3D homogeneous vector, where the 2D
detector coordinates (u,v)⊺ can be derived from the relation
x̂D = (uw,vw,w)⊺. For equation (2), w= zS, but in general, w
is a scaling factor obtained from projection matrix multiplic-
ation that is needed for the calculation of the 2D coordinates
from the homogeneous coordinates.

For the projection formula (2), we need the position of the
3D points of the measurement volume in S . The measurement
volume is moved during the scan with regard to S, but is fixed
with regard to H̃. Therefore, we can link the coordinate sys-
tems to get a mapping x̂H̃ → x̂D,j:

x̂D,j = PSx̂S,j = PSTWSTTW,jTHTTH̃H,jx̂H̃
= PH̃,jx̂H̃. (3)

The transformation matrix TWS only depends on the dis-
tance between the x-ray source and the rotation axis dSR, which
is taken from the output of the internal calibration procedure
of the CT device. From figure 1(b), it can be derived that

TWS =


0 −1 0 0
0 0 1 0
−1 0 0 dSR
0 0 0 1

 . (4)

The transformation due to the rotary table TTW,j only con-
sists of a rotation around the z-axis and is therefore

TTW,j =

[
Rz(αj) 0
0⊺ 1

]
.

For our investigations, we use homogeneously increasing
scan angles αj = ( j− 1) · 2π/n with j ∈ [1,n], where n is the
number of projections for the scan. The transformation THT

depends on how the hexapod has been mounted and adjus-
ted on the rotary table. It is constant during the scan, but only
roughly known. For metrological purposes, however, the mat-
rix entries must be accurately known. The matrix (or rather

the three rotation angles and three components of the shift)
is therefore determined by the calibration procedure that is
presented in the next section 4. Finally, TH̃H,j is calculated
according to equation (1) using the position values and rota-
tion angles set to the hexapod.

As already mentioned, the goal is a representation of the
measurement volume in W in the initial state (zero scan
angle and hexapod in zero position/orientation). We indicate
this state with j= 0. Consequently, a mapping x̂W,0 → x̂D,j is
required. This can be achieved by expressing x̂H̃ as x̂H̃(x̂W,0).
To reach this, we use

x̂W,0 = TTW,0THTTH̃H,0x̂H̃ = ITHTIx̂H̃ = THTx̂H̃,

where I is the 4× 4 identity matrix. The expression can be
rearranged to

x̂H̃ = T−1
HT x̂W,0

and inserted back into equation (3):

x̂D,j = PSTWSTTW,jTHTTH̃H,jT
−1
HT x̂W,0

= Pjx̂W,0. (5)

Pj in equation (5) is the projection matrix that is finally fed
to the reconstruction software for each projection. The only
unknown in the equation for Pj is THT, which is determined by
the calibration procedure presented in the next section.

4. Single sphere calibration method

To obtain the transformationTHT, which is needed for the com-
putation of the projection matrices for a 3D scan trajectory, a
ball is mounted on the top plate of the hexapod and imaged
at different poses of the hexapod. Setting up a formula that
describes the locations of the projected sphere midpoint gives
then the possibility to optimize the parameters of THT by min-
imizing the reprojection error (difference between measured
and calculated detector coordinates).

Before we give more information about the used sequence
of poses and the method for detecting the projected sphere
midpoint in the x-ray images, we first derive the formula for
the reprojection error, which is used as objective function in
the optimization step. The formula for the calculated detector
coordinate can be derived with the help of figure 4. The con-
catenation of coordinate systems is the same as presented in
the previous section, with the difference that the rotary table
is not used for the calibration procedure. Therefore, TTW is the
identity matrix TTW = I and T coincides with W . The calib-
ration procedure consists of performing a sequence of specific
hexapod poses, expressed by TH̃H,k. To be able to calculate the
coordinates of the projected midpoint xD,k = (uk,vk)⊺ for each
projection of the calibration procedure, besides the unknown
THT, the position t of the sphere in the moved coordinate sys-
tem of the hexapod is needed. t could potentially be determined
with additional measuring systems, but as one purpose of our
method is to be independent of further measurement devices, t
is treated unknown and has therefore also be determined by the
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Figure 4. Concatenation of coordinate systems used for the
calibration procedure. The rotary table is held constant at α= 0
(leading to TTW = I). The hexapod moves to different poses TH̃H,k.
The constant but unknown parameters THT and t are determined by
optimization, using the projected midpoints of the sphere.

optimization process. In sum, following projection formula is
obtained:

x̂D,k = PSTWSTHTTH̃H,k

(
t
1

)
. (6)

If the detector coordinates of the midpoint projection are
measured by means of image processing, the unknowns THT

and t can be optimized, minimizing the squared distances d2k
between the measured points xD,k,meas and the calculated ones
from equation (6):

θopt = argmin
θ

∑
k

d2k(θ)

= argmin
θ

∑
k

∥xD,k,meas − xD,k(θ)∥22. (7)

In θ, the overall nine parameters ofTHT and t are subsumed:

θ =
(
φHT,x,φHT,y,φHT,z, t

(1)
HT , t

(2)
HT , t

(3)
HT , t

(1), t(2), t(3)
)
.

For the optimization, we used the nonlinear least squares
solver based on the Levenberg–Marquardt algorithm from the
optimization toolbox of Matlab R2020b. This toolbox allows
an easy implementation directly based on equations (6) and (7)
without the need for advanced knowledge in the field of
mathematical optimization. The only adaption we made was
to change the default abort criteria to ensure that a further
increase of the computational effort would only lead to neg-
ligible changes in the resulting values of θ. The used source
code is provided as supplementary data to this article.

A reasonable starting point should be applied for the optim-
ization. We used a rough estimate based on the orientation of
the clamping (see figure 1(b)) and the fact that the Pivot point
was roughly set to the position of the sphere, which is projec-
ted near the center of the image. Thus, θ was initialized with
(0,0,π,0,0,0,0,0,0).

For the calibration procedure, different pose sequences of
the hexapod can generally be chosen. The pose sequences that
we used for the validation of the method and for the recon-
struction of 3D trajectories are presented in the next section.

Figure 5. Position grid as basis for the generation of the pose
sequence for the hexapod. At each position, the sphere is rotated
around each single axis of the hexapod.

5. Validation

We performed the calibration procedure experimentally with
the setup presented in section 2 as well as by means of
radiographic simulationswith geometry settings adapted to the
experiments.

In each case, the pose sequences that we investigated are
based on a grid of positions (see figure 5). The grid spacing
is homogeneous with maximum/minimum position values of
±10mm for each axis. For each position, the sphere is imaged
first without rotation and then with a rotation of ±5◦ around
each axis separately. This results in seven projection images
per position.

In case of experiments, a metal ball made from tungsten
carbide with a diameter of 8mm and a grade G10 according
to DIN 5401 [18] was used. The ball has been pressed inside
a hollow cylindrical sample holder made from polyether ether
ketone, which is mounted on the hexapod top plate with differ-
ent cylindrical extensions (see figure 6). For experiments, we
used a grid of 3× 3× 3 positions. This results in sum in 189
projections. Exemplary x-ray images of the resulting sequence
are shown in figure 6(c).

The calibration procedure has been performed at two dif-
ferent magnifications (2.7 and 5.3), which were tailored to the
measurement tasks presented in section 6. For each magnifica-
tion, the procedure was experimentally performed twice to be
able to investigate the repeatability. As input for the optimiz-
ation, the read out values from the encoders of the hexapod
were used for the parameters of TH̃H,k.

We replicated the experimental calibration procedures with
simulated x-ray images using the software aRTist 2.12 (BAM
Federal Institute for Materials Research and Testing, Ber-
lin, Germany). The simulations were performed with settings
(geometry, tube and detector properties) that have been adjus-
ted to the used CT device. The expansion of the x-ray spot,
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Figure 6. Experimental realization of the calibration procedure. (a) Schematic of the pressed-in metal ball inside the sample holder.
(b) Mounted sample holder. (c) Exemplary x-ray images for the pose sequence.

Figure 7. Exemplary x-ray image of the calibration procedure
obtained by experiment (a) and simulation (b). The gray values are
linearly scaled between the minimum (black) and the maximum
(white) intensity value, respectively. As only the edge region of the
ball is relevant, for simplification reasons, the sample holder
geometry was not completely adjusted to the real part.

the polychromatic source spectrum and the noise as well
as unsharpness of the detector were considered. The sample
holder was replaced by a tube as simplified geometry in the
simulation. The pose sequence of the hexapod was virtually
performed based on programmed scripts using the Tcl inter-
face of the software. The geometric parameters THT and twere
roughly set to the outcome of the experimental results. The
positioning of the hexapod was simulated without deviations
from the ideal theoretical poses. An exemplary simulated x-ray
image is shown in figure 7 in comparison to the corresponding
experimentally obtained image.

In case of simulations, we investigated different grid sizes
for the positions from 2× 2× 2 to 5× 5× 5. As the position
of the sphere and the coordinate system of the hexapod are
exactly known in the simulation, the accuracy of the calibra-
tion method can be directly evaluated.

The image processing steps to detect the projected sphere
midpoints in the x-ray images were the same for experiment
and simulation and identical to the method used in our former
publication [8]. Thus, the midpoint of the ellipse fitted to the
edge of the sphere projection was determined and corrected
according to [19].

5.1. Simulation results

Before the calibration procedure was virtually performed, we
tested the optimization algorithm by feeding in the theoret-
ical exact 2D coordinates instead of the measured coordinates.
Doing so, the optimization yielded the exact values for θ. This
proves that the algorithm converges in principle to the correct
solution for the investigated pose sequences.

Simulating the complete calibration procedure including
the x-ray imaging and sphere detection leads to deviations
between measured and calculated 2D coordinates, which in
turn leads to inaccurate end results for the optimization pro-
cess. Table 1 lists the resulting deviations for the two investig-
ated magnifications and the different number of poses.

The table contains the root mean square (rms) value of the
distances between the detected and calculated (according to
equation (5) using the optimized THT) 2D coordinates:

doptrms =

√
1
n

∑
k

d2k

=

√
1
n

∑
k

∥xD,k,meas − xD,k(θopt)∥22. (8)

We term this measure reprojection error in the following. It
is directly connected to the objective function (7) and can be
seen as mean pixel deviation after optimization. However, in
case of simulations, we also know the exact value of THT and
can therefore also calculate the theoretically exact 2D coordin-
ates. Therefore, we can also calculate the rms valuewith regard
to the exact coordinates

dexactrms =

√
1
n

∑
k

∥xD,k,meas − xD,k(θexact)∥22, (9)

which is a direct measure for the accuracy of the ellipse detec-
tion method. From table 1, it can be seen that the accuracy
of the ellipse detection is around 1/50 of the pixel side length
for the simulated projection images. For the used detector, this
corresponds to 4µm in the image plane.

The values doptrms are even slightly below the values of dexactrms .
This is due to the fact that the optimization does not find the
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Table 1. Simulation results. Here, ∆t exactHT , ∆φ exact
HT and ∆t exact are the deviations from the true values.

Magnification No. of poses
dopt
rms

(pixels)
d exact
rms

(pixels)

∆t exactHT (µm) ∆φ exact
HT (µrad) ∆t exact (µm)

x y z x y z x y z

2.7 2× 2× 2× 7 0.0200 0.0207 1.9 3.4 1.8 −6.1 14.0 2.2 3.3 3.4 −2.0
2.7 3× 3× 3× 7 0.0214 0.0219 13.8 1.8 0.6 −3.5 1.4 5.6 1.2 1.7 −0.7
2.7 5× 5× 5× 7 0.0243 0.0244 −1.9 −1.3 −1.7 −2.9 −4.3 −7.1 −0.6 −1.3 1.7
5.3 2× 2× 2× 7 0.0194 0.0198 1.18 0.7 −0.1 3.0 7.4 3.3 1.1 0.8 0.1
5.3 3× 3× 3× 7 0.0207 0.0209 −0.05 0.1 0.8 3.0 6.4 −2.6 −0.4 0.1 −0.7
5.3 5× 5× 5× 7 0.0208 0.0209 −0.02 0.2 0.4 −0.5 8.8 −0.6 0.4 0.3 −0.4

Table 2. Experimental results. Here, ∆tHT,∆φHT and ∆t are the differences between the outcome from the two single calibration runs.

Magnification Run No. of poses
dopt
rms

(pixels)

∆tHT (µm) ∆φHT (µrad) ∆t (µm)

x y z x y z x y z

2.7 1 3× 3× 3× 7 0.1578
2.7 2 3× 3× 3× 7 0.1542 −11.9 −10.8 −11.8 −4.3 87.5 −156.2 312.6 −97.7 9.6
5.3 1 3× 3× 3× 7 0.4960
5.3 2 3× 3× 3× 7 0.4947 −7.4 1.0 0.4 −5.0 24.7 24.7 2.2 −4.5 −0.9

true values θexact (compare the deviations given in table 1), but
alternative values that compensate for the inaccuracies of the
ellipse detection and lead to a lower value for the objective
function than the true values. It can therefore be inferred that
the optimization algorithm works correctly in terms of minim-
izing the objective function and that the resulting deviations
are mainly caused by the finite pixel size and image noise.

As an interesting detail, it can be observed that the devi-
ations∆texactHT and∆texact are not independent. In fact, the devi-
ations nearly compensate for each other. Looking for example
at the z component, the values for ∆texact are very accurate
the negative values of the z component of ∆texactHT . In case of
the x and y components one must consider that the coordinate
systems, in which tHT and t are defined, are oriented towards
each other by an 180◦ rotation around the z-axis. Thus, a com-
pensation is expressed by identical values (instead of negative
values). For the y component, this can be confirmed while for
the x component larger differences exist. This is attributed to
the fact that the sensitivity of the position of the projection is
lower for a shift of the sphere in direction of the optical axis
(x-direction) in comparison to a shift in the image plane. For
a possible improvement of the method, in future, the rotary
axis of the CT device could be used to capture calibration
images also at a scan angle of 90◦. Doing so, the hexapod
translations for calibration could be restricted to movements
that are perpendicular to the optical axis for the respective scan
angle.

5.2. Experimental results

In case of experiments, the true values for THT are not known.
Therefore, dexactrms and the deviations of the geometric paramet-
ers with regard to the true values cannot be determined. How-
ever, the reprojection error after optimization doptrms still gives a
hint on the accuracy. Furthermore, the differences between the
results of the respective two different calibration runs allow for

an rough estimation of the repeatability. The according values
can be found in table 2.

Regarding the reprojection error doptrms, the relative differ-
ence between the repetitions of the calibration procedure are
2% or less. However, the values are one order ofmagnitude lar-
ger than the results from simulation in table 1. A closer look
on the pose-wise distances between detected and calculated
2D coordinates dk (see equation (8) for the definition of dk)
allows for analyzing the reasons for the comparatively large
reprojection error. The values of dk for one exemplary calib-
ration run are plotted in figure 8 in comparison to the values
obtained by simulation.

In case of the simulation, the values of dk are homogen-
eously distributed for the pose sequence. In contrast, the values
from experiment show distinct large values above 0.8 for spe-
cific poses. A comparison with figure 6 yields that these high
values belong to poses with φH̃H,y =±5◦, i.e. when a rotation
around the hexapod y-axis is applied. Contrary, for the poses
with no rotation (φi = 0), the values for dk are between 0.003
and 0.05with a rms value of 0.031 and are therefore in a similar
range in comparison to the simulation. For rotations around the
x- and z-axis, the rms value is 0.069 and 0.144, respectively.
For a magnification of 2.7, the characteristic behavior is the
same (not shown here). It is therefore assumed that the calibra-
tion procedure including the image processing works in prin-
ciple correctly for the experimental case and that the overall
large reprojection error is mainly caused by inaccuracies of the
y tilting of the hexapod. To examine the influence of the orient-
ation used for the mounting of the hexapod (φHT ≈ (0,0,π)),
we repeated the experiment at a later time with the rotary table
positioned at α= 90◦. The diagram for the reprojection error
(not shown here) was similar to figure 8(b), but now with high
dk values for rotations around the hexapod x-axis. This sug-
gests that there exist similar inaccuracies of the hexapod for x
as well as y tilting, but the sensitivity of the projected position
on those errors is different for the two axes.
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Figure 8. Reprojection error for each pose of the calibration procedure for simulation (a) and experiment (b) at a magnification of 5.3.

The deviations between the geometric parameters obtained
from the two different calibrations runs, respectively, (see
∆tHT, ∆φHT and ∆t in table 2) are higher than the absolute
deviations from the true values for the simulations. While the
repeatability therefore seems to be quite low for the applica-
tion of the calibration method for dimensional measurement
tasks with CT, it has to be considered that deviations for tHT
andφHT are not to be put on a level with dimensional errors for
measurands in a CT scan, which will also become clear from
the results in the next section.

6. Application on metrological CT scans with 3D
scan trajectories

As already mentioned, in the experimental case, the absolute
deviations for the resulting geometric parameters cannot be
determined as the reference values are not known. Therefore,
we performed 3D scan trajectories for two different measure-
ment objects and the two investigated magnifications to eval-
uate the influence of the calibration procedure on the resulting
accuracy for dimensional measurements in comparison to the
standard circular scan trajectory, which was also applied. In
this way, a direct statement about the feasibility of the method
for metrological CT can be made. The repetitions of the cal-
ibration runs presented in the last section were furthermore
conducted before and after eachmeasurement scan. Therefore,
the repeatability can also be discussed in terms of dimensional
measurement errors.

6.1. Measurement objects and scan trajectories

Figure 9 gives an overview of the used measurement objects
and scan trajectories that we used for the metrological CT
scans.

The 3D scan trajectories are generated by applying a tilt
for the hexapod top plate, while the position values tH̃H,j are
kept constant at zero. The specific shapes of the trajectories
have no physical background, i.e. they were not adjusted to

the object geometries in any way and only represent possible
regular shapes that were exemplary chosen.

In the following, we describe the calculation of the angles
that should be set to the hexapod to obtain the desired tra-
jectory shapes. As certain approximations will be used, it is
important to note that these calculations are not used for the
computation of the projection matrices for the reconstruction,
but only to implement the scan trajectories for the measure-
ment scan.

The trajectory shapes in figure 9 can generally be achieved
by a tilt around the yW-axis (see figure 1(b)). This means that
the measurement object is always tilted around an horizontal
axis that is perpendicular to the central ray and is therefore
fixedwith regard to the x-ray source and the detector. To obtain
such a tilt, it has to be considered that the hexapod is moved
with the rotary table.Mathematically, this means that the hexa-
pod top plate is rotated first and then the rotary table is rotated.
The resulting orientation of the hexapod top plate must be
identical to the one that would be obtained if the rotary table
was rotated first and then the hexapod top plate was tilted by
φtilt,j around the yW-axis. This can be expressed by

RTW,jRHTRH̃H,j = Ry,j(φtilt,j)RTW,jRHT.

Strictly speaking, the tilt Ry,j(φtilt,j) is only exactly around
the yW-axis, if besides from tTW,j = tH̃H,j = 0, also tHT = 0 (see
figure 3). Due to the realized mounting of the hexapod and the
set Pivot point, the origin of H is close to the origin of W
(in the order of some mm) and therefore the approximation
tHT ≈ 0 is valid for the present purpose.

The roughly needed orientation of the hexapod R set
H̃H,j to be

set for a specific desired tilt angle φtilt,j can therefore be cal-
culated by

R set
H̃H,j = R−1

HTR
−1
TW,jRy,j(φtilt,j)RTW,jRHT. (10)

The extraction of the rotation angles (φ set
H̃H,x,j

, φ set
H̃H,y,j

,

φ set
H̃H,z,j

) from the rotation matrix R set
H̃H,j is given in appendix.
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Figure 9. Mounted measurement objects (left column), source trajectory (middle) for 3D scan (blue) and circular scan (red) and exemplary
x-ray images (right) for the multi-feature specimen (a) and the multi-sphere length standard.

The results from the calibration procedure were not imme-
diately available at the time of the 3D scans. Therefore we
further used the approximation RHT ≈ Rz(π), as the hexapod
is mounted very close to this orientation. Again, it is import-
ant to note that the approximation for RHT and equation (10)
were only used to calculate the wanted hexapod pose settings
(T set

H̃H,j). For the calculation of the projection matrices used for
reconstruction equation (5), the optimized RHT from the cal-
ibration procedure and the values for TH̃H,j obtained by the
encoder readouts were used.

The first object, termed multi-feature specimen in the fol-
lowing, is made from Aluminum (EN AW-6082) and has
already been used in our former work [8]. To obtain a stable
fixture, the object was screwed on the hexapod top plate with
cylindrical extensions. The object was mounted in an already
tilted orientation at zero hexapod position to get a high quality
for the circular reference scan (also see investigations about
the optimal orientation in [20]). The scan trajectory results
from a tilt angle that varies in form of a triangle wave with an
amplitude of 8◦, a phase shift of 90◦ and seven periods over
the full scan. The exact values in dependence of the scan angle
αj in radian can be expressed in a compact form by

φtilt,j =
28
45

∣∣∣∣((αj+ π

14

)
mod

(
2π
7

))
− π

7

∣∣∣∣− 2π
45

, (11)

where mod is the modulo function, i.e. amodm is the
remainder after division of a by m.

The second object is a calibrated multi-sphere length stand-
ard (METROTOM-Check from Carl Zeiss Industrielle Mess-
technik GmbH, Oberkochen, Germany) with 27 ruby spheres
with diameter of 5mm on ceramic shafts and a base made from
Invar. A special clamping plate was designed for stable mount-
ing of the object on the hexapod top plate. The tilt angle to
construct the scan trajectory was varied sinusoidally with an
amplitude of 4◦ and an offset of 1◦ and seven periods over the
full scan. The values in radian are

φtilt,j =
π

180
+

4π
180

sin(7αj).

6.2. Measurement settings and methods

The used CT settings for the scans and for the according calib-
ration runs are listed in table 3. Generally, the calibration pro-
cedures were performed with lower tube voltage as the focus
here is on a good contrast on the resulting edges of the pro-
jected ball and not on a sufficient penetration of the center
area. The CT scans were conducted with 2× 2 pixel binning to
obtain a lower number of voxels for the reconstructed volume.
The reason for that is that the voxel number is limited by the
memory size of the graphics card used for the iterative recon-
struction algorithm.

The reconstruction was performed with a C++ program
that makes use of the application programming interface of
the software CERA 6 (Siemens Healthcare GmbH, Erlangen,
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Table 3. Used parameters for the measurement scans and
calibration procedures. The nomenclature for the measurement
objects is according to figure 9.

Magnification 2.7 5.3

Type Meas. Calib. Meas. Calib.

Object (b) ball (a) ball
Number of projections 1000 189 900 189
X-ray tube voltage (kV) 180 120 180 100
X-ray tube current (µA) 350 600 370 370
Prefilter (Cu) (mm) — — 0.25 —
Integration time (s) 1.0 1.0 1.0 2.0
Images averaged 1 2 1 2
Gain 8 8 8 8
Pixel binning 2× 2 1× 1 2× 2 1× 1
Voxel side length (µm) 148.2 — 75.6 —

Germany). The iterative reconstruction based on the simultan-
eous algebraic reconstruction technique, i.e. the CERA ART
pipeline with algorithm setting ‘basic’ was used. For each
measurement scan, a single iteration was performed with a
relaxation factor of 0.8. The resulting voxel values were expor-
ted as floating-point numbers with 32 bit precision. The geo-
metry of the 3D scan trajectories was considered by reading in
the projection matrices Pj, which were calculated according to
equation (5) using the experimental calibration results for THT

from the previous section and the set hexapod transformations
from equation (10).

For both measurement objects, dimensional measurands
for which calibration data from tactile coordinate measur-
ing machines (CMMs) exist were investigated. In this way,
the measurement errors can directly be assessed. In case of
the multi-feature specimen, additionally, a target-actual com-
parison was performed. All dimensional measurements were
evaluated using the software VGStudio Max 3.5 (Volume
Graphics GmbH, Heidelberg, Germany). The surfaces of the
measurement objects were iteratively extracted using the set-
ting ‘Advanced’ with automatic material detection from the
gray level histogram.

The geometry of the multi-feature specimen principally
allows for a high number of length measurands. How-
ever, it was observed from regularly repeated tactile cal-
ibrations that specific, mainly bidirectional, length measur-
ands are prone to fluctuations that are too high in compar-
ison to typical measurement errors of CT measurements to
be regarded as proper reference. For this reason, a calib-
ration measurement was performed once with an in-house
CMM (UPMC 1200 CARAT S-ACC, Carl Zeiss Industri-
elle Messtechnik GmbH, Oberkochen, Germany) and second,
externally at a service provider with the CMM PRISMO ultra
(Carl Zeiss Industrielle Messtechnik GmbH, Oberkochen,
Germany). The investigation of measurement errors for CT
were then restricted to measurands for which the calibra-
tion results between the two tactile measurements differed
less than 0.3µm. The according measurands are shown in
figure 10. The mean of the two single tactile measurements
results was used. All measurands are based on geometry

Figure 10. Investigated measurands for the multi-feature specimen.
The measurands are distances between planes (L1 to L6) or calottes
(L7) and have nominal values between 4mm and 12mm. The outer
dimension of the specimen is 60mm along the part axis.

elements that are fitted to the probing points in a least squares
sense.

As reference for the target-actual comparison of the multi-
feature specimen, not the computer-aided design (CAD)
model of the part was used, but a surface triangle mesh derived
from the CAD and corrected for manufacturing deviations
according to [21]. The necessary reference data for this tech-
nique was obtained using the already mentioned tactile in-
house CMM. First, the method converts the nominal CAD
geometry into a high-fidelity triangle mesh, with a target tri-
angle edge length of approx. 100µm, which is independent
of the local geometry curvature. Next, the vertices of this
mesh are shifted based on the CMM probing points for each
geometry element (e.g. cylinder) using Voronoi interpolation.
Because of the fact, that it is usually not possible to tactilely
probe work piece edges and in order to allow arbitrary CMM
probing patterns, the method does not shift edge vertices,
which means that edge regions are by design described by the
nominal geometry. Therefore, the result is a hybrid nomin-
al/actual high-fidelity triangle mesh, which locally represents
the CMM measurement data or the CAD geometry in edge
regions and for unprobed geometry elements. The nominal-
actual comparison is then at the location of the triangle ver-
tices, which are by design not affected by interpolation error
associated with curved regions.

In case of the multi-sphere length standard, the distances
between the sphere midpoints as well as the sphere diamet-
ers and sphericity values were defined as measurement tasks.
While calibration data exist for the distances and diamet-
ers, this is not the case for the sphericity. However, for the
ruby spheres of the object, deviations from the spherical form
due to manufacturing errors are much lower than typical CT
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Figure 11. Slices through the reconstructed volume data of the multi-feature specimen. (a) Circular scan trajectory. (b) 3D scan trajectory.
The gray values are linearly scaled between the minimum (black) and the maximum (white) intensity value of the full slice image,
respectively.

measurement errors. Probing points for CT were homogen-
eously distributed on the full sphere surface with a safety dis-
tance of 0.5mm from areas with a surface gradient above 15◦.
It should be mentioned that the CT settings as well as the eval-
uation software and measuring strategy (e.g. number and dis-
tribution of probing points) for the multi-sphere length stand-
ard differ from the presented configuration when the identical
object is used for conformity assessment of CT devices. Res-
ults presented here can therefore not be directly used to rate the
accuracy of the used device. Yet, it was tested that the choice
of the evaluation software and the measurement strategy did
not change the key findings.

6.3. Results and discussion

Figure 11 qualitatively compares the reconstructed volume
data for the multi-feature specimen and the two different scan
trajectories. The slices through the volume have an overall
good quality for both the circular as well as the 3D scan tra-
jectory. Though, the magnified views uncover streak-like ima-
ging artifacts for the 3D scan trajectory (see magnified image
section of the x–y-slice and lower section of the y–z slice). On
the other hand, cone-beam artifacts in the area of the thread
hole (see upper image section of the y–z slice) are only present

for the circular scan trajectory, as the 3D trajectory satisfies the
sufficiency condition [22].

From the slice images, it is difficult to infer the influence
of the scan trajectory on the accuracy of the surface determ-
ination. A more suitable assessment basis is given by the
color coded surface errors from the target-actual comparison
in figure 12. It is clearly visible that the result from the 3D
scan trajectory shows overall higher errors, especially for the
two cylindrical surface areas on the top and bottom of the part.
In fact, the periodicity of the tilt angle variation equation (11)
leads to periodically alternating positive and negative surface
errors along the circumference. The maximum absolute sur-
face error in these cylindrical areas is around 90µm. In other
areas, e.g. at the six cuboids in the left view in figures 12(a)
and (b) respectively, the errors are in a comparable range in
comparison to the circular scan, but still with slightly higher
values (maximum absolute surface error of roughly 18µm).

The results for the analyzed dimensional measurands
figure 13 support the finding of higher errors for the 3D
scan trajectory. In figure 13, the measurement errors are addi-
tionally differentiated between results that arise if the first
single sphere calibration run (before the measurement scan)
is used and results that arise using the second calibration run.
It is visible that the differences between these two cases are
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Figure 12. Target-actual comparison for the measured surface of the multi-feature specimen. (a) Circular scan trajectory. (b) 3D scan
trajectory. For better comparability, the color map (‘vik’ from [23]) is cropped at ±25µm respectively.

Figure 13. Measurement errors for the length features of the multi-feature specimen. The blue and red bars belong to reconstructions for the
3D scan trajectory based on different calibration runs.

negligible. This suggests that the repeatability of the hexapod
positioning as well as the optimization is sufficient for the cal-
ibration procedure.While random positioning errors might not
be significant for the influence of the calibration procedure on
measurement errors, they could still affect the repeatability of
the measurement scan in a significant manner. However, res-
ults from repeatedmeasurements in our former work [8] (using
the same hexapod and measurement object) suggest that this
is not the case.

Overall, as already observed from the slice images in
figure 11 and the target-actual comparison in figure 12, the
quality of the reconstruction result and consequently the abso-
lute dimensional measurement errors are inferior to the res-
ults from the circular trajectory. As already discussed in
section 5.2, it is assumed that this is mainly caused by
discrepancies between the calculated and true hexapod poses
arising from an inaccurate (still reproducible) tilting around

the hexapod axes. Indeed, test measurements of the part with
3D scan trajectory using the multi-sphere calibration tech-
nique of [8] (not presented in this paper) did not show the peri-
odic surface errors of figure 12 and also not that high errors for
the measurands. As the multi-sphere calibration method com-
pensates for systematic positioning errors, this supports the
hypothesis.

Next, the dimensional measurement results for the multi-
sphere length standard are presented. Figure 14 shows the
measurement errors for the sphere distances. For a better
assessment of the magnitude, the plots also contain the max-
imum permissible error (MPE) according to [24] that is stated
by the supplier of the CT device. The results obtained with
both scan trajectories are below the MPE and in a typical
range compared to monitoring measurements that are reg-
ularly conducted with multi-sphere length standards of the
same type. The overall absolute errors for the two different
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Figure 14. Measurement errors for the sphere distances of the multi-sphere length standard. (a) Circular scan trajectory. (b) 3D scan
trajectory. For the 3D scan trajectory, the reconstruction was done twice, using the results from the single sphere calibration before and after
the measurement scan.

Figure 15. Measurement errors for the sphere diameters of the
multi-sphere length standard.

trajectory types are in a comparable range. In agreement to
the findings from the multi-feature specimen, the results for
the 3D trajectory based on different calibration runs are nearly
identical.

Sphere distance measurements allow for the judgment of
scaling errors, but are more robust with regard to form errors.
Therefore, also the sphere diameters figure 15 and the spheri-
city values figure 16 were measured.

The same characteristic result can be obtained from both
figures: The circular scan trajectory leads to lower errors. This
might be due to the already discussed absolute positioning
errors, but also possibly from random errors due to the finite
positioning repeatability or thermal influences of the hexapod
motors. Again, the chosen calibration run (before or after the
measurement scan) has no effect on the results. It should be
mentioned that cone-beam artifacts, which generally arise for
circular CTmeasurements of balls, do only have aminor effect
for the investigated object and geometry setting. Accordingly,

Figure 16. Sphericity values for the multi-sphere length standard.

a reduction of form errors, which could potentially be reached
with a 3D scan trajectory [8] by avoiding cone-beam artifacts,
was not observed.

7. Summary

In this paper, we have presented a method to calibrate 3D
scan trajectories for dimensional CT with a hexapod as 6-DOF
object manipulator. The method is based on imaging a single
metal ball and therefore represents a easy-to-implement altern-
ative in comparison to methods based on multi-sphere objects
that require calibration data. Keeping the intrinsic paramet-
ers of the CT device fixed, a one-step optimization approach
was used to extract the geometry parameters of the hexa-
pod coordinate system, which are required to compute the
projection matrices for any scan trajectory. The projection
matrices are necessary to correctly reconstruct the measure-
ment volume.
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The convergence of the optimization results towards
the true geometry parameters was validated by means of
simulation studies. The theoretically achievable accuracy was
found to be limited by the detection accuracy for the projected
ball midpoint in the x-ray images. The experimental validation
yielded higher reprojection errors than the simulation studies,
which was attributed to inaccuracies for rotations performed
by the manipulator device. This was also assumed to be the
major cause for comparatively high measurement errors when
the method is applied to CT scans for dimensional measure-
ments. Nevertheless, the overall accuracy might be sufficient
for certain measurement tasks and is expected to increase for
a higher pose accuracy of the manipulator system.

The presented calibration method could potentially be
improved in terms of accuracy by mathematically correcting
for absolute positioning errors. Further improvements could
be obtained by additionally making use of the rotary table of
the CT device or by usingmore than one sphere, but this would
contradict the advantage of an easy implementation. Possible
industrial fields of application for the version presented could
therefore also be in the area of qualitative non-destructive test-
ing with lower accuracy requirements.

The methodology can also be transferred to other object
manipulator systems such as robotic arms and also to systems
in which the x-ray source and the detector are moved and not
the object. For systems with fixed source-detector-distance,
as it is for example the case with C-arm CT devices, the
method can be applied without major adaptations. The achiev-
able accuracy for robot based setups however again depends
on the positioning accuracy of the manipulator devices. While
the pose repeatability of robot arms might be sufficient [2],
comparatively high systematic deviations might make it more
feasible to use calibration methods such as the multi-sphere
based procedure in [8] that compensate for systematic errors.
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Appendix. Rotation matrices

A rotation matrix representing an orientation can be composed
by three successive extrinsic rotations using the basic rotation
matrices Rx(α), Ry(β) and Rz(γ), which are defined as

Rx(α) =

1 0 0
0 cosα −sinα
0 sinα cosα

 ,

Ry(β) =

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ

 ,

Rz(γ) =

cosγ −sinγ 0
sinγ cosγ 0
0 0 1

 .

Different rotation sequences based on these basic rota-
tions can be chosen. Especially if rotation angles have to be
found by optimization, the choice should be made in a way
that ambiguities due to gimbal lock (second rotation angle at
±90◦) are avoided. In our case, we used rotation sequences
R= Rx(α)Ry(β)Rz(γ), which are also used by the hexapod
controller. Using the abbreviations s for the sine function and
c for the cosine function, the matrix R is given by

R= Rx(α)Ry(β)Rz(γ)

=

 cβ cγ −cβ sγ sβ
cαsγ+ sαsβ cγ cαcγ− sαsβ sγ −sαcβ
sαsγ− cαsβ cγ cαsβ sγ+ sαcγ cαcβ

 .

Note that rotation sequences are also sometimes given as
intrinsic (local) rotations, i.e. rotating around the moved axes.
This results in a inverted order of basic rotations.

From an existing rotationmatrixR, the rotation angles from
R= Rx(α)Ry(β)Rz(γ) can be extracted from single entries of
the matrix (see e.g. [26]). From R1,3 = sinβ, there are two pos-
sible solutions for β between−π and π. If we restrict the range
to −π/2⩽ β ⩽ π/2, the solution can be calculated by

β = arcsinR1,3.

Provided that β ̸=±π/2 (no gimbal lock), the angles α and γ
are determined by

cosγ =
R1,1

cosβ
, sinγ =− R1,2

cosβ
,

cosα=
R3,3

cosβ
, sinα=− R2,3

cosβ
.
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These equations can be solved using the atan2 function [27]:

γ = atan2

(
− R1,2

cosβ
,
R1,1

cosβ

)
,

α= atan2

(
− R2,3

cosβ
,
R3,3

cosβ

)
.
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