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Abstract
High-resolution electron microscopy is achievable only when a high electron dose is employed, a
practice that may cause damage to the specimen and, in general, affects the observation. This
drawback sets some limitations on the range of applications of high-resolution electron
microscopy. Our work proposes a strategy, based on machine learning, which enables a significant
improvement in the quality of Scanning Transmission Electron Microscope images generated at
low electron dose, strongly affected by Poisson noise. In particular, we develop an autoencoder,
trained on a large database of images, which is thoroughly tested on both synthetic and actual
microscopy data. The algorithm is demonstrated to drastically reduce the noise level and approach
ground-truth precision over a broad range of electron beam intensities. Importantly, it does not
require human data pre-processing or the explicit knowledge of the dose level employed and can
run at a speed compatible with live data acquisition. Furthermore, a quantitative unbiased
benchmarking protocol is proposed to compare different denoising workflows.

1. Introduction

Much progress has been made in the field of electron microscopy in the last decades. At present,
aberration-corrected scanning transmission electron microscopes (STEMs) provide the highest resolution of
all imaging instruments, below 0.1 nm, and allow to investigate the structure and chemical composition of
materials at the atomic scale [1]. STEM operates by focusing a convergent electron beam to a small area and
scanning it across the sample. The signal can then be detected either directly under the sample or at a wide
angle from it, two modes known as bright and dark field. One of the major limitations of STEM is that
atomic resolution is achievable only when the specimen is illuminated by a very intense electron beam. This
maximizes the signal-to-noise ratio, but may damage the sample and the observation. In fact, the damage is a
function of the electron dose, defined as the total number of electrons per unit area hitting the specimen, and
it is caused by various energy-loss mechanisms. Among the most common ones, there is the so-called
knock-on damage, where the atoms of the sample are displaced from their sites due to a transfer of
momentum from the incident electrons [2]. In this condition the specimen under investigation changes in
time as the measure progresses.

The sample integrity can be protected by decreasing the electron dose, but this leads to a deterioration of
the image quality, thus reducing the chance to extract useful information from the data. The reason behind
such loss of resolution can be ultimately identified in the presence of Poisson noise, which increases upon
reducing the number of incident electrons [3], according to the relation,

f∝ 1
√
ρ
, (1)
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where f is the noise and ρ the dose. In contrast to other types of signal distortions, such as Gaussian noise,
scan noise and drift [4], Poisson noise is related to the quantized nature of the electron beam and therefore
cannot be eliminated by improving the instrumentation or changing the working conditions. For instance, it
is possible to eliminate Gaussian noise completely by replacing analog with digital data acquisition, a strategy
that itself represents one of the latest electron microscopy advancements [5]. Another advantage of digital
data acquisition is the ability to generate images, where the pixel intensity corresponds to the number of
electrons detected at a given pixel, namely the pixel intensity is a directly observable quantity. In our opinion
digital data acquisition represents the ultimate future of electron microscopy, a consideration that motivated
our choice of considering only Poisson noise in this work.

Notably, noise removal is a common practice in image processing. However, most of the denoising
techniques provide accurate results only in the case of additive noise, such as Gaussian. On the contrary,
Poisson noise is signal-dependent and requires more advanced techniques [6].

One of the most commonly used strategies for noise removal in electron microscopy is the application of
a smoothing Gaussian filter [7, 8]. However, as it will be shown in this work, such method can sometimes
lead to results that are less precise than the original noisy version of the image. A more sophisticated
technique is known as ‘block matching and 3D filtering’ [9]. In this case, images are decomposed into
fragments, which are grouped by similarity, and then the fragments are passed through filters. Unfortunately,
such denoising scheme assumes that the images to process correspond to a 2D periodic structure, an
assumption potentially leading to artifacts, such as the inability to identify genuine vacant sites.

An alternative to these methods is provided by deep-learning techniques, which are becoming
increasingly popular in the microscopy field across several applications [10]. The majority of the available
denoising algorithms involve Gaussian noise only, so that they are useful only for analog data acquisition.
State-of-the-art neural networks for Poisson-noise removal have been proposed [11]. These provide
significant noise reduction, but their performance rapidly degrades at low doses. The reason behind such
low-dose accuracy loss can be identified in the nature of the training set, made of simulated STEM images
obtained by using a simple linear imaging model. In fact, in order to have a more realistic dataset, it is
advisable to use simulation techniques that implement a multislice algorithm [12] or the Bloch wave
method [13]. These quantum mechanical techniques employ a detailed description of the specimen and of
the instrument settings to generate the images, meaning that they implement a more faithful simulation of
an actual measurement. In general, electron microscope images do not follow a simple linear image model;
therefore, any linear method cannot be quantitatively precise [13]. Furthermore, this state-of-the-art
technique requires inputs from the users, who should decide whether or not to apply some level of
up-sampling/down-sampling before processing the image.

In this manuscript we propose an alternative machine-learning architecture trained on a diverse dataset
of synthetic images, which is unbiased against periodic structures and operates across a broad range of dose
levels. In particular, we have implemented a denoising convolutional autoencoder, trained over pairs of ideal
and corrupted STEM images, in which Poisson noise is applied. The ideal images are referred to as
infinite-dose images and have been generated by using the Prismatic simulation software [3, 14]. This is a
highly-optimized multi-GPU simulation package, based on the multi-slice algorithm. The advantage of
using Prismatic in place of other simulation codes [13] lies in the possibility of using the PRISM (plane-wave
reciprocal-space interpolated scattering matrix) algorithm, which delivers a significant acceleration in the
simulations. This is a key feature considering the large amount of images needed for the training. Our
training set then contains various materials and includes defective structures, for instance incorporating
vacancies. The corrupted images are distributed across a broad range of dose settings. The reason for training
the model on simulated data is twofold. Firstly, generating an experimental dataset is an extremely expensive
and time-consuming endeavor, when compared to images obtained by simulation. Secondly, the training of
the autoencoder requires the ground-truth (noiseless) images, which represent the algorithm target. Clearly,
such ideal images cannot be obtained under real experimental working conditions.

Our model is then tested on both simulated and real data, obtained at different levels of dose and for
various materials, not included in the training dataset. Finally, in order to properly analyze the results, a
technique based on atom localization is developed. This allows one to quantify the improvement in the
quality of information extracted from the images and to compare results processed with different denoising
strategies. Such aspect is completely overlooked in the majority of the works dealing with STEM-image
denoising, where the improvement of a method is usually assessed only through a qualitative visual
comparison. Our work thus proposes a strategy for quantitative benchmarking different algorithms. Finally,
it should be noted that our approach does not require any data pre-processing, since it predicts the actual
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signal of a microscopy measurement. This allows the algorithm to be integrated into existing microscopes
and be applied live during the data acquisition.

2. Model construction

2.1. Neural Network
The deep-learning method chosen for the denoising process is an artificial neural network known as
autoencoder, traditionally used for dimensionality reduction and feature extraction [15]. This consists of two
parts: an encoder that maps the input (in this case the noisy images) into a reduced space called the latent
space, and a decoder that maps the latent space into the output (in this case the infinite-dose images). The
architecture proposed here consists of ten layers in total, five for the encoder and five for the decoder, and the
input is made of electron-dose 2D maps resolved over a 128× 128-pixel grid. The activation function is ReLu
for each layer and the optimizer applied during the training is Adam [16]. Each convolutional layer is formed
by 32 filters, except for the last layer, in which only one filter is used. This is because the output should have
the same size as the input. The kernel size measures three pixels for both spatial directions and the same
padding is imposed. Max pooling and up-sampling layers are exploited in order to reduce and increase the
data dimension, respectively. For an input with size (128,128,1), the latent space representation size is
(32,32,32). The model architecture was optimized by performing hyperparameters tuning over a validation
set, additional information can be found in appendix A.

The definition of the loss function is particularly significant in constructing the autoencoder. The
commonly used mean squared error (MSE) is not suitable for the training of the proposed dataset. In fact, in
the standard MSE equal importance is given to both black (low intensity) and non-black (high intensity)
pixels, even if the interest sits mainly with the non-black pixels, which indicate the presence of the atoms.
Note that the importance of black and white pixels is reversed when the image is taken in the bright field. It
should also be noted that Poisson noise varies according to the pixel intensity. Therefore, when a pixel is
black no noise is detected and the corrupted and uncorrupted images are identical. For this reason, we
employ a customized loss function, which gives more importance to the pixels that are not black in the
original images contained in the training set. This loss function can be described as a weighted MSE
(WMSE), with a 1000:1 weight ratio for non-black pixels. It can be expressed as

WMSE=
1

n

n∑
i=1

wi(̃yi − yi)
2 (2)

wi =

{
1 if i=min(y);
1000 otherwise.

where n is the number of pixels in each image, wi is the weight associated to the ith pixel, ỹi the predicted
value and yi the true value.

2.2. Training set
The autoencoder is trained on a dataset made of about 27 000 simulated images, all generated by using the
Prismatic software [3, 14].

Different materials have been considered in the creation of the training set, namely, graphene, graphite,
GaAs, InAs, MoS2, SrTiO3, and Si. These include pristine and defective structures incorporating vacancies,
generated across various imaging conditions. Details about the training set construction can be found
in appendix B. All images have been cropped into 128× 128-pixel plots, which is the format used to
construct the autoencoder. Note that, common real images are usually larger (at least 512× 512 pixel), but
dealing with reduced size allows one to increase the computational efficiency and to identify more details in
the reconstructed data.

The pixel intensity of the images generated by Prismatic corresponds to the fractional intensity of the
entire electron beam that is scattered to the specified STEM detector at a given pixel. This takes values
comprised between 0 and 1, and usually corresponds to around 10%–15% of the entire beam intensity.
Measuring the signal in fractional units does not allow us to directly retain information of the actual physical
electron dose used. As such, before applying the Poisson noise, it is necessary to convert the pixel values into
integers, representing the physical number of electrons at a given pixel. This can be obtained by multiplying
the original pixel value by the total electron dose (in units of electrons per Å2) and then by multiplying by the
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pixel size (in Å2). Such conversion is important to generate a training set with an intensity distribution
compatible to that of typical experimental data. As a consequence, any type of pre-processing of the test data
can be avoided, which is a crucial condition to use our machine-learning tool during the actual microscope
real-time data acquisition. It is also important to remark that in doing so the pixels value, namely the
outcome of our autoencoder, will describe a directly measurable quantity with proper physical meaning. This
is not common practice in the case of analog-acquired data, where the pixel value cannot be directly
associated to an observable and the images are usually scaled between 0 and 1 before training and testing.

The choice of the dose values included in the training set highly affects the performance of the model and
the ability to denoise images taken over a wide range of doses. As such one wishes to keep that range as wide
as possible. However, both the time required for training and the computational costs also scale with the size
training set and diversity of the data, so that a compromise between data variety and computational effort
must be found. For this reason we have selected a dose range going from 500 e− Å−2 to 10 000 e− Å−2. In the
construction of the dataset the dose value for each image is randomly selected within the defined range, so
that there is no dose bias across the various materials.

3. Results

The model has been trained on Quadro RTX 8000 GPUs, for 500 epochs, with a batch size of 64. GPUs,
provided by Nvidia, allowed us to significantly speed up the training time. In fact, the time required to train
one epoch over the Quadro RTX 8000 GPUs is about 15 s, while with Tesla K40c approximately 120 s are
needed. The training of one epoch of the same dataset on a CPU would require 717 s. After the training,
during approximately 2 h and 30 min, the model performance has been tested on simulated and
experimental images. Once the model is trained, the time required to denoise one image is less than 1 s,
namely it is comparable to the acquisition time at an actual STEM.

Running the model on experimental images is ultimately the fundamental test to establish the
effectiveness and usefulness of the algorithm over real data. However, the tests performed on simulated
images provide us with useful information as well. In fact, the synthetic images include infinite-dose
ground-truth data, which then help us in producing a quantitative benchmark for the algorithm. Different
techniques can be used to validate the model, at both the qualitative and quantitative level, these are
illustrated in what follows.

3.1. Visual comparison
The most straightforward qualitative evaluation consists of a visual comparison between the reconstructed
and the corrupted images. The improvement brought by the denoising process is easily recognizable even by
researchers, who are not experts in electron microscopy. A visual example is shown in figure 1, which
displays the reconstruction of the digital experimental images of a gold nanoparticle deposited on an
amorphous carbon substrate, obtained at different dose levels (note that gold is not included in the training
set). The data are provided in the form of 20 different frames of the same sample region; by summing up the
signals of an increasing number of frames one can obtain multiple images at different doses. In the
experimental acquisition the dwell time was 2 µs for each frame and the beam current was approximately
5 pA. This means that the dose of a single frame is 62 e−/pixel. The dose of each image is then 62 e−/pixel
multiplied by the number of frames used for the image. For the sake of brevity, only 3 of the 20 consecutive
sums are presented here. In particular, 128× 128-pixel portions of the images acquired at 62 e−/pixel, 372
e−/pixel, and 744 e−/pixel are shown in figure 1. The top row displays the noisy images, the second one
corresponds to the reconstructions obtained after the application of the autoencoder, the third row contains
the difference between the noisy and the reconstructed images (referred to as Residual), and the bottom row
shows the fast Fourier transform of the Residual. Although gold is not classified as a beam-sensitive material,
the example provided is effective, since it tracks the model performance across different dose levels, a task
that remains challenging when dealing with experimental data.

The reconstructed data always display a significant quality improvement over the original noisy images.
In fact, from the reconstructions, one can immediately recognize the five crystallite forming the gold
nanoparticle, regardless of the noise level of the original image. The most notable difference between the
three reconstructions is the shape of the individual atoms, which appear progressively more round as the
dose increases. Note that our algorithm is not trained to necessarily return round atoms, but only to denoise
the signal. This is why at very low dose, as in the case of 62 e−/pixel, there is significant atomic distortion. It
is also worth noting that no further progress is found when adding additional frames to the 744 e−/pixel
case (namely when increasing the dose). This result allows one to conclude that, upon autoencoder
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Figure 1. Image reconstruction of a gold nanoparticle deposited on an amorphous carbon substrate, and imaged at different dose
levels. Top row: the original noisy images; second row: the reconstructions obtained after the application of the autoencoder; third
row: the difference between the noisy and the reconstructed images (called Residual); bottom row: Fast Fourier Transform (FFT)
of the Residual. The three columns correspond to different dose levels, respectively from left to right 62 e−/pixel, 372 e−/pixel,
and 744 e−/pixel.

reconstruction, an increase in the dose is not needed to obtain a satisfactory reconstruction. As a
consequence, the beam damage to the sample can be reduced.

The two bottom rows of figure 1 show some periodicity in the removed noise. This is an expected feature
of the Poisson noise, which scales with the pixel intensity, and does not imply a loss in crystallographic
information. Such periodicity in the residual appears to be more evident for high-dose images, a fact that
simply demonstrates that the autoencoder can remove the noise at high dose more efficiently than at low
dose. It is worth mentioning that crystal structure information in the residual would not be found in images
affected by Gaussian noise only. Gaussian noise, in fact, is not intensity-dependent and therefore does not
follow the crystal structure. A final important consideration is that the model is able to efficiently denoise the
data despite the presence of an amorphous substrate, which generates diffuse scattering and hence additional
non-Poisson noise. Substrate scattering was not included in the training set, so that the reconstructed images
should be considered as Poisson denoised but still inclusive of substrate scattering.

3.2. Line profile analysis
A quantitative evaluation of the model performance can be achieved through the so-called line profile
analysis. This consists in selecting one line of pixels, along the horizontal direction in this case, and by
plotting the pixel intensity at each position. One thus obtains an intensity scan profile that can be used to
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Figure 2. Line profile analysis. On the top row, the image intensity is shown as a function of the horizontal position for the
infinite-dose, the reconstructed and the noisy image. A comparison of the peaks intensity allows one to distinguish atoms
corresponding to different elements. The high peaks correspond to Pb, which has the highest atomic number, while the small
peaks correspond to Te atoms, the species with the lower atomic number. In fact, the pixel intensity in dark field images increases
with the atomic number [17]. The test is conducted on a simulated image of TePb. The dose value of the noisy image is 32
e−/pixel with a pixel size of 0.18 Å. The image corresponds to a 252Å thick TePb slab oriented along the 001 direction. In the
bottom row we show the original images used to conduct the line-profile analysis. The scanning line is plotted in red.

distinguish atoms of different elements, as shown in figure 2. The line profile analysis is here conducted on a
synthetic image of a 252Å thick TePb specimen oriented along the 001 direction, taken at the low dose of
1000 e− Å−2, with a pixel size of 0.18 Å. This corresponds to a pixel dose of 32 e−/pixel. As we can note from
the figure, although the intensity profile of the reconstructed image is not identical to that of the
infinite-dose one, the reconstruction appears to be accurate enough to localize and distinguish Te and Pb
atoms, namely it contains the same content of information of the ground-truth case. In contrast, when the
same line profile analysis is conducted over the noisy image the two different species appear indistinguishable
so that the chemical information cannot be extracted. The original images used to perform the line profile
analysis can be seen in the bottom row of figure 2.

3.3. Precision of atomic column localization
Another technique that can be used to quantitatively validate the model, involves the determination of
atomic column localization. This essentially defines the position of the various atomic columns, thus
allowing one to extract quantitative structural information from the STEMmeasurements. By performing
atomic column localization, it is possible to quantify possible lattice strain and measure its error. This is a
technologically useful information, since strain affects many physical properties of a material [18]. Several
computational schemes and associated software are available for this purpose, one of them is the
Matlab-based package StatSTEM [19]. StatSTEM is based on the principle that, in STEM images, the
intensity peaks are located at the atomic column position and these can be approximated by a Gaussian
function [20]. Since several localization methods can be used to determine the position of the Gaussians, it is
important that our quantitative analysis considers both the localization method and the denoising algorithm,
in order to provide a quantitative benchmark of the various possible image-processing workflows.
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Figure 3. Left-hand side panel: simulated image of a 252 Å thick Tellurene sample oriented along the 001 direction. The image is
taken with a pixel size of 0.2 Å and a dose of 10 000 e− Å−2. The red arrows represent the horizontal and vertical distances
measured to verify the precision of the atomic column localization. Right-hand side panel: schematic of the crystal structure.

The precision of the atomic column localization can be estimated by measuring the distances between the
various atoms, in both the horizontal and vertical directions. As these are determined solely by the crystalline
structure, a statistical distribution of the distances provides a quantitative measure of the accuracy of the
combined denoising and localization algorithm. Thus, the standard deviation of the computed distances can
be taken as a measure of the accuracy and one can compare results obtained for the infinite-dose, the noisy
and the reconstructed images. A reduction in the distance standard deviation corresponds to an
enhancement in the image resolvability. The strain error along the horizontal and vertical direction can then
be found by dividing the standard deviation in the position by the reference horizontal and vertical distances,
respectively.

Figure 3 shows the simulated image used for this investigation. This corresponds to a 252 Å thick
Tellurene sample oriented along the 001 direction and imaged with a pixel size of 0.2 Å. The reference
horizontal and vertical distances, a and b respectively, are marked by the red arrows. The easiness of
identifying these distances makes Tellurene a good candidate for strain error analysis. The plot in figure 3
corresponds to the highest dose considered for this analysis, namely 10 000 e− Å−2, while denoising is also
performed for images taken at 500 e− Å−2, 1000 e− Å−2, 2500 e− Å−2, 5000 e− Å−2 and 7500 e− Å−2.

Our denoising autoencoder is then tested against a commonly used algorithm for image processing,
namely a Gaussian filter [21]. The procedure to measure the column localization by using StatSTEM is as
follows. Firstly, one needs to define the starting coordinates for the atomic column positions, namely the
local maxima in the image. This can be achieved by using one of the two available peak-finder routines that
may include also filters to smooth the image. Such filtering option is not employed in the present study,
where the only simplification is the setting of a threshold value to remove nuisance pixel intensities from the
background. This step is necessary to avoid the identification of too many fictitious atoms in the case of
images characterized by strong noise. In order to set the same value for each image and to make the analysis
coherent, the intensity is normalized to 1; then we find that the minimum threshold value compatible with
the algorithm memory requirement is 0.12. The difference between the two peak-finder routines lies in the
way the smoothing of the image can be achieved, namely either by adding filters or by altering the estimated
radius of the atomic columns. The so-called Peak-finder routine 2 is used for this analysis; however, the same
results can be achieved with the Peak-finder routine 1 when no filters are imposed.

After this first step, one has the option to manually add atoms positions, an operation that is not
considered in this case in order to avoid any human bias in the workflow. Once the starting coordinates are
identified, a fitting procedure can be used to model the image as a superposition of Gaussian peaks. In this
step, it is possible to specify the width of the atomic columns, by choosing between the Same and Different
options. In the first case all Gaussian are taken with the same width. In contrast, the second more
computationally demanding option makes the approach more general, since it does not assume that all the
Gaussian peaks have the same width. As such it avoids the introduction of any a priori knowledge of the
image. The final result of this procedure is a set of coordinates, which correspond to the atomic columns in
the image. These values can be used to measure the horizontal and vertical distances a and b between the
atomic columns, as shown in figure 3. The values obtained from this operation are displayed as histograms in
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Figure 4. Comparison of the strain error along the horizontal (left-hand side panel) and vertical (right-hand side panel) direction
at various dose levels for simulated images of Te. The strain error is computed for the infinite dose (blue line), the noisy image
(orange line), and the reconstruction obtained by using the proposed autoencoder (AE—green line) and the Gaussian Filter
(GF—red line).

the appendix. From the histogram corresponding to each image, the strain error can be computed and
compared at different dose values. This is shown for the distances a and b of Tellurene (see figure 3) in
figure 4.

In the figures, the strain error for the infinite-dose case is represented as a blue line and, by definition, it
is dose-independent. This, in fact, represents the ultimate theoretical precision achievable by noise-free
STEM. In contrast, the noisy images have a strain error that grows with reducing the dose, in an approximate
exponential behavior. Our autoencoder is able to drastically improve over the noisy images and returns us a
strain error that trails closely that corresponding to the infinite-dose case. In more detail, we find that the
denoised images present a strain error, which is approximately dose independent when the electron dose is
higher than 2500 e− Å−2. For lower doses a sharp error increase is reported. Such increase, however, leaves
the strain error far below what computed for the noisy images. We then conclude that the autoencoder is less
effective at ultra-low dose, but still remains significantly performing across the entire range. Note that one, in
principle, can also train different autoencoders for different dose levels. This, however, may not be a good
strategy, since often the beam intensity is not accurately measured during the STEM operation. For this
reason an autoencoder trained over a broad dose range appears more flexible for real-life situations.
Interestingly, simple Gaussian filtering (red lines in the figures) appears unable to improve the column
localization of noisy images, with the only exception at very high doses. Therefore, the commonly used
Gaussian filter should be avoided when performing accurate quantitive measures of atomic positions, at least
when the data-processing workflow remains completely users unbiased. In this situation our results suggest
that even the untreated images provide a better estimate of the column positions, unless rather large doses
are used.

We believe that the comparison provided here should represent a general benchmarking scheme to
compare different denoising workflows in a completely unbiased way.

4. Conclusions

We have proposed a neural network trained on simulated STEM images, which allows one to successfully
remove Poisson noise from low-dose digital data. Tests on both simulated and experimental images have
been conducted to validate the model. Our results show a clear improvement in the image resolution and in
the possibility to extract useful information from the data in a completely unbiased way. The use of this
model may allow a drastic reduction of the dose level to be employed in real-life measurements, making it
possible to analyze very beam-sensitive compounds. Notably, our proposed denoising algorithm does not
require any human input or knowledge of the actual beam intensity, being trained over a broad range of
doses. Crucially, the denoising process of a 128× 128-pixel image can be performed within approximately
one second, making the scheme amenable to be used in a live mode during the actual STEMmeasurement.

Data availability statement
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Appendix A. Hyperparameters tuning

Hyperparameter tuning was performed to optimize the model architecture. A list of all the hyperparameters
of the model and the range of hyperparameter values investigated can be found in table A1.

Appendix B. Training set details

The Prismatic package [3, 14] has been used to simulate the images of the various materials forming the
training set. More specifically, images of graphene, graphite, GaAs, InAs, MoS2, SrTiO3, and Si have been
generated across different imaging conditions: (a) the pixel size varies from 0.08 to 0.3 Å, (b) the sample
thickness range is 250–630 Å, (c) the electron beam energy range is 80–200 keV, and (d) the inner and outer
detector collection angles are 30 and 60 mrad, 30 and 70 mrad, 50 and 180 mrad, 60 and 180 mrad, 65 and
180 mrad, 75 and 180 mrad, 80 and 180 mrad. These intervals correspond to realistic imaging and materials
parameters, commonly encountered in actual STEM experiments. For each material, 10 to 12 images were
generated, including pristine and defective structures incorporating vacancies. In order to avoid
reconstruction bias, each simulated image has been rotated at two random angles so to increase the variety of
the dataset. Poisson noise has been applied according to multiple dose values, within the range 500 to 10 000
e− Å−2. Going more in detail, for each image 60 dose values have been randomly selected within the defined
range, so that there is no dose bias across the dataset. It is worth mentioning that a different dose distribution
across the dataset has also been tested. In this case, the number of images N i at a certain dose value was
proportional to the selected dose value, according to the relation:

Ni(dose)∝
1√
dose

, (B.1)

which is the same relation that occurs between Poisson noise and dose (see equation (1)). However, this
solution did not improve the model performance. Finally, the images have been cropped into 128×
128-pixel plots. The result is a dataset made of about 30 000 images: 10% was used as validation set and 90%
as training set. The different materials are equally distributed in the dataset. The mentioned values have been
chosen in agreement to the desired training set size, which has been chosen according to the computational
memory availability.

Appendix C. Atomic column localization details

The data used for the analysis of the atomic column localization precision are displayed in figure C1. The first
column shows 128× 128-pixel images of Tellurene simulated at various dose levels, ranging from 10 000 e−

Å−2 to 500 e− Å−2. The reconstruction obtained by using the proposed auotencoder (Reconstructed AE) and
that obtained with a Gaussian Filter (Reconstructed GF) can be seen in the second and third column,
respectively. The resolution enhancement is more evident for higher dose levels, for both reconstruction
techniques. However, the autoencoder appears to be significantly more successful in the reconstruction task
at low dose, and in general at any dose value.

The StatSTEM software used to localize the atom position in these images, is described in section 3.3 of
the main paper. Once the atomic columns are localized, the horizontal and vertical distances, displayed in
figure 3, are measured and they can be represented as histograms, for each image. Figure C2 shows the

9

https://www.tcd.ie/crann/aml/


Mach. Learn.: Sci. Technol. 4 (2023) 015025 L Gambini et al

Table A1. List of all the hyperparameters defining our model together with the corresponding range of values investigated.

Hyperparameter Investigated values

Number of layers 6, 10, 14
Number of filters in the Conv2D layers 8, 16, 32, 64
Loss function weight 10, 100, 1000, 10 000
Optimizer Adam, Adadelta
Batch size 16, 32, 64

Figure C1. Noisy, autoencoder-reconstructed and Gaussian-Filter-reconstruced images of simulated Te at various dose levels.
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Figure C2. Probability histograms obtained from the measurement of the horizontal distance a between atomic columns for
noisy, autoencoder-reconstructed and Gaussian-Filter-reconstruced images of simulated Te at various dose levels.

histograms for the horizontal distance, a, while figure C3 shows the histograms for the vertical distance, b.
The results are here represented as probability histograms, which means that the data are normalized to one.
The data associated with the noisy images are placed in the first column, while those associated with the
autoencoder and the Gaussian Filter reconstructions are in the second and third column, respectively.

The distribution appears to be more uniform for the autoencoder-reconstructed data (Reconstructed AE),
compared to the other results. In the noisy and Gaussian-Filter-reconstructed (Reconstructed GF) images

11
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Figure C3. Probability histograms obtained from the measurement of the vertical distance b between atomic columns for noisy,
autoencoder-reconstructed and Gaussian-Filter-reconstruced images of simulated Te at various dose levels.

some atoms are misplaced and incorrectly localized, therefore the spread in the histograms appears wider. It
should be noted that the scale of the x-axis in the case of the autoencoder-reconstructed data is different
from that of the other two columns. The distances reported in the central column of both figures C2 and C3
appear to be more localized around a single value with a distribution following an approximately normal
distribution. Such feature facilitates the atoms localization.
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