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2

1 Institute of Statistics and Mathematical Methods in Economics, TU Wien, Vienna, Austria, 2 Department of

Mathematics, University of Vienna, Vienna, Austria

☯ These authors contributed equally to this work.

* kory.johnson@tuwien.ac.at

Abstract

In light of the continuing emergence of new SARS-CoV-2 variants and vaccines, we create a

robust simulation framework for exploring possible infection trajectories under various scenar-

ios. The situations of primary interest involve the interaction between three components: vac-

cination campaigns, non-pharmaceutical interventions (NPIs), and the emergence of new

SARS-CoV-2 variants. Additionally, immunity waning and vaccine boosters are modeled to

account for their growing importance. New infections are generated according to a hierarchi-

cal model in which people have a random, individual infectiousness. The model thus includes

super-spreading observed in the COVID-19 pandemic which is important for accurate uncer-

tainty prediction. Our simulation functions as a dynamic compartment model in which an indi-

vidual’s history of infection, vaccination, and possible reinfection all play a role in their

resistance to further infections. We present a risk measure for each SARS-CoV-2 variant, rV,

that accounts for the amount of resistance within a population and show how this risk changes

as the vaccination rate increases. rV highlights that different variants may become dominant

in different countries—and in different times—depending on the population compositions in

terms of previous infections and vaccinations. We compare the efficacy of control strategies

which act to both suppress COVID-19 outbreaks and relax restrictions when possible. We

demonstrate that a controller that responds to the effective reproduction number in addition to

case numbers is more efficient and effective in controlling new waves than monitoring case

numbers alone. This not only reduces the median total infections and peak quarantine cases,

but also controls outbreaks much more reliably: such a controller entirely prevents rare but

large outbreaks. This is important as the majority of public discussions about efficient control

of the epidemic have so far focused primarily on thresholds for case numbers.

Introduction

The continued waves of the COVID-19 pandemic present unique challenges to regulatory

bodies and governments. At issue is the balance between restricting behavior in order to
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Beiglböck M, Polechová J (2022) Robust models

of disease heterogeneity and control, with

application to the SARS-CoV-2 epidemic. PLOS

Glob Public Health 2(5): e0000412. https://doi.org/

10.1371/journal.pgph.0000412

Editor: Brooke E. Nichols, Boston University,

UNITED STATES

Received: September 22, 2021

Accepted: April 6, 2022

Published: May 9, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pgph.0000412

Copyright: © 2022 Johnson et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All code, parameters,

data, and corresponding citations are available at

https://github.com/korydjohnson/COVID_

heterogeneity.

https://orcid.org/0000-0002-7322-2451
https://orcid.org/0000-0001-9922-3578
https://orcid.org/0000-0001-9271-864X
https://orcid.org/0000-0003-3787-2155
https://orcid.org/0000-0003-0951-3112
https://doi.org/10.1371/journal.pgph.0000412
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgph.0000412&domain=pdf&date_stamp=2022-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgph.0000412&domain=pdf&date_stamp=2022-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgph.0000412&domain=pdf&date_stamp=2022-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgph.0000412&domain=pdf&date_stamp=2022-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgph.0000412&domain=pdf&date_stamp=2022-05-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgph.0000412&domain=pdf&date_stamp=2022-05-09
https://doi.org/10.1371/journal.pgph.0000412
https://doi.org/10.1371/journal.pgph.0000412
https://doi.org/10.1371/journal.pgph.0000412
http://creativecommons.org/licenses/by/4.0/
https://github.com/korydjohnson/COVID_heterogeneity
https://github.com/korydjohnson/COVID_heterogeneity


reduce the spread of SARS-CoV-2 and the desire to return to a normal state-of-affairs. On one

hand, many countries provide a deluge of statistics to measure the severity of COVID-19, even

on a highly granular level. These statistics then inform complex decisions on how many

restrictions to enforce. On the other hand, some countries lack sufficient testing to accurately

track the spread of COVID-19. Our guiding question is, what statistics should be considered

when determining if mitigation measures should be increased or decreased? Of concern is the

oft-repeated scenario in which a new variant emerges which spreads more rapidly either due

to increased infectiousness or vaccine escape.

To this end we create a compartment model that has compartments for each vaccinated,

infected, and recovered group (for each variant), and add dynamic interactions between these

groups as well as immunity waning and boosting. For example, someone could have been

infected with the original SARS-CoV-2 variant, then receive a vaccine, then perhaps later

become infected with a new SARS-CoV-2 variant. The resistance to further infection conferred

by such a history is distinct from those who have, for example, only been vaccinated. These fac-

tors influence the effective reproduction number: the expected number of new infections

caused by a currently infected individual. We can then simulate infections using this model in

order to answer questions about case dynamics when a new SARS-CoV-2 variant is intro-

duced. Each infectious compartment generates new infections according to the momentum

model of [1], which accounts for superspreading.

We also add a controller to our simulations, which can both observe and intervene in the

compartment model. The controller is thought of as a governing agent which is responsible for

both keeping COVID-19 outbreaks at manageable levels and not imposing unnecessary

restrictions, i.e., for keeping outbreaks under “control.” In order to mimic a real-life entity

such as a government, the controller must be constrained in various ways. First, the controller

does not observe latent variables such as infectiousness, only raw data such as number of new

cases (for each variant), which account for only a proportion of true infections equal to the

detection ratio. Second, these statistics are observed with a lag, i.e., there is a delay between

when infections occur and when cases are observed. Third, the controller uses non-pharma-

ceutical interventions (NPIs) such as mask wearing, testing and tracing, and gathering restric-

tions (soft lockdowns)—which mitigate the effective reproduction number of SARS-CoV-2.

Lastly, these interventions cannot change continuously: there is a mandatory temporal gap

after an intervention before the controller can intervene again.

Under these constraints, we are able to explore what statistics the controller needs to

respond to in order to effectively suppress new outbreaks. Note that we are not advocating a

particular intervention or comparing their efficiency [2, 3]. Instead, we are considering what

information could best inform timely decisions on modifying NPIs and assess the efficacy of

the different controllers. We note that the success of the controller we implement will not be

mirrored exactly in reality: few if any governments willingly act as rapidly as stipulated, and

people modify their behavior in response to the perceived severity of the outbreak [4]. Notably,

immediate action is often not taken when a country crosses the case thresholds stipulated by

the World Health Organization [5, 6]. This is exacerbated by the lag between infection and

case observation (the “delay” parameter): governments which either fail to collect adequate

data or do not make decisions using a forecast will make decisions with greater delay. Yet, we

can show that the general principles of efficient control are robust.

First, we provide a summary of the Methods. The Results section then compares the mod-

elled dynamics of the SARS-CoV-2 variants, as well as the controllers’ effectiveness in contain-

ing both current and hypothesized variants. The Discussion highlights broader implications of

our research and further questions which could be explored within the framework. Detailed

structured Methods are included after the Discussion, with subsections which describe the
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compartment model with different vaccines and variants, the controllers we consider, how

waning is implemented, and how the simulation is initialized to mimic a real outbreak.

Summary of methods

Here we explain the gist of the methods, while all details are given in section Methods at the

end of the manuscript.

Superspreading

We follow [1] to incorporate the variability in individual infectiousness in our model. Such

superspreading has been demonstrated to improve the robustness of forecasts by increasing

the width of prediction intervals. In contrast to usual compartment models where each indi-

vidual has the same effective reproduction number Re;t , the momentum model [1] uses indi-

vidual-specific reproduction numbers which are sampled according to a Gamma distribution

with mean Re;t and variance R2

e;t=k. The superspreading dispersion parameter, k = 0.1, corre-

sponds to approximately 10% of infected individuals causing 80% of new infections [7]. The

random, individual infectiousness is aggregated each day over all individuals to yield the

“momentum” of the disease. The expected number of new infections on a day is given by a

weighted sum of these daily momentum values, with weights given by the generation interval,

wm. The true infections are then Poisson distributed with this mean (see Eqs (3), (4) and (5) in

the Methods section).

Compartment model and notation

We build a compartment model in where each compartment represents a group of people

with a unique history of infection and vaccination given by h. Each unique history confers a

group-specific resistance to future infection by any variant V. All variants have a basic repro-

duction number which is proportional to that of the wild type via the coefficient l
V

: RV
0
¼

l
VRWT

0
With this notation, we can then define the effective reproduction number of variant V

within group h, RhV
e;t , as the product of all factors which affect the basic reproduction number

of that particular variant at time t: RhV
e;t ¼ Ltð1 � MtÞð1 � g

hVÞl
VR0. Here, Lt is the effect of

seasonality, Mt is the effectiveness of NPIs on reducing the infectiousness (see Eq (7) of Meth-

ods), and ghV is the resistance of group h to infection with variant V. Resistance parameters are

presented visually in Fig 1. Furthermore, we generalize the model to include gradual waning of

population immunity which takes the form of individuals randomly transitioning to less-resis-

tant groups over a specified period of time. The Methods section, at the end of the paper, pro-

vides details of resistance parameters, dynamic compartment creation, and the

implementation of waning.

Model setup and validation

We initialize the simulation using the history of infections and vaccinations in Austria using

data from [8–11] (see Methods: Initializing the Simulation for details). In order to validate our

model, we use data available on June 12, 2021, and asses how it fits observed cases into the

(then) future. Then, we initialize our model on data available on August 8, 2021, introduce a

hypothetical variant we term Omega, and simulate future cases through May 2022. As the vari-

ant Omicron appeared in the process of revising this paper, we adjusted the resistance parame-

ters to approximately match what was known about Omicron; yet, we assume the same
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generation time for all variants (with the exception of Fig F in S1 File), and hence we keep the

label Omega for the hypothetical variant to note this distinction.

We specify a detection ratio that an infected individual is diagnosed and appears in the offi-

cial case statistics; this is important, because the controller responds to detected cases and our

validation experiments compare to observed cases. In the application to Austrian data, we use

a detection ratio of 1/1.4, which is informed by local models which consider estimates of IFR

and use jointly the detected cases, hospitalizations, and deaths due to COVID-19 [12, 13].

Results

This section presents simulation results for a setting constructed to be similar to that in Aus-

tria. This serves to anchor the simulation in a realistic setting, though the high-level results are

applicable beyond Austria as well. To aid comparisons to other countries, data are reported as

cases/100,000 inhabitants. For a summary of quantitative results, see Table 1.

Comparing variants

Ultimately, our model requires many parameters to be set which govern the resistance one var-

iant provides to infection from others as well as resistances conferred due to vaccines. There

Fig 1. Midpoint estimates of resistance parameters. Complete statistics including confidence intervals are given in Table 2.

https://doi.org/10.1371/journal.pgph.0000412.g001

Table 1. Summary of quantitative comparisons between reactive and proactive control. Statistics are provided for the difference in medians (reactive—proactive con-

trol) and corresponding 95% confidence intervals as well as the ratio of the 97.5% quantiles of predicted values (reactive/proactive control). The corresponding simulation

summary figures are also given for reference. We note that the values are illustrative and are sensitive to both the specifics of the controllers, how the simulations were ini-

tialized, and for how long they were run.

Variant Waning Thresholds Delay Figure Total Infections / 100,000 Peak Quarantined Cases / 100,000

Median (CI) q-Ratio Median (CI) q-Ratio

Delta No High 7 Fig 6 509.6 (450, 580) 1.94 108.2 (99, 118) 2.80

Delta No Low 7 Fig 9 53.2 (29, 79) 1.18 16.8 (14, 20) 2.02

Omega No Low 7 Fig 10 297.1 (236, 361) 3.35 20.9 (13, 29) 5.49

Omega No Low 21 Fig 11 309.62 (220, 454) 2.05 10.11 (1, 20) 1.82

Omega Yes Low 7 Fig 13 656.62 (453, 875) 3.38 83.72 (48, 119) 5.61

https://doi.org/10.1371/journal.pgph.0000412.t001
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are three relevant dimensions in which we allow variants to differ: the basic reproduction

number RV
0

, immune escape after vaccination, and immune escape after infection. It is impor-

tant to view these as three separate components, and we note that increasing severity in multi-

ple categories may over-estimate the true risks of different variants. We assume that the

generation interval does not significantly differ among variants, which is consistent with

known estimates for Delta and older variants [14–16]. The Supporting Information explores

other settings in which variants have generation intervals with lower mean, such as is possible

for Omicron.

Table 2 discusses the parameters we use and how they differ between variants. We extend

that discussion here by showing how these parameters translate into dimensions of primary

concern. To simplify a visual presentation, Fig 2 only shows RV
0

and vaccine effectiveness,

which are the two most important measures that are independent of population composition.

We further distinguish vaccine effectiveness between mRNA (�) and vector (Δ) vaccines. Both

estimates and their uncertainty are summarized in Fig 2, in which the parameters are drawn

from a truncated normal distribution with mean and truncation points given in Table 2. The

uncertainty represented in Fig 2 is also included in our simulations.

While Fig 2 summarizes raw parameters, it is not sufficient to characterize which variants

are of greater concern within a given population. We also show how these variant characteris-

tics map to variant risk and are affected by the rise of immune resistance due to vaccinations.

These are the two dimensions of primary interest: our risk measure combines both the variant

profiles and the background population characteristics, while vaccinations provide the long-

Table 2. Model parameters for different variants.

Label WT Alpha Beta Gamma Delta Omega WT,A,B,G,D Omega

l
V 1 1.3 1.25 1.40 2 1.55 6 months waned 6 months waned

- (1.24,1.33) (1.2,1.3) (1.22,1.48) (1.76,2.17) (1.35,1.75)

mRNA 0.94[42, 43] 0.94[42, 43] 0.75[44] 0.85[43] 0.84[42, 43] 0.6[45] 0.5[45, 46] 0.05[45]

(0.85,0.96) (0.85,0.96) (0.7,0.8) (0.7,0.93) (0.7,0.86) (0.5,0.65) (0.4,0.6) (0,0.1)

vector 0.86[42] 0.86[42] 0.1[47] 0.65[48] 0.7[42] 0.3[45] 0.4[45, 46] 0[45]

(0.65,0.93) (0.65,0.93) (0,0.55) (0.6,0.8) (0.65,0.73) (0,0.55) (0.35,0.45) (0,0.05)

booster 0.96[45] 0.96[45] 0.96[45] 0.96[45] 0.96[45] 0.7[45] 0.85[45] 0.3[45]

0.94,0.98 0.94,0.98 0.94,0.98 0.94,0.98 0.94,0.98 0.6,0.8 0.75,0.9 0.2,0.4

WT 0.87[42] 0.87[42] 0.7[49] 0.7[50, 51] 0.77[42] 0.3 0.4 0

(0.84,0.9) (0.84,0.9) (0.55,0.8) (0.55,0.8) (0.66,0.85) (0,0.55) (0.35,0.45) (0,0.05)

Alpha 0.87[42] 0.87[42] 0.7[49] 0.7[50, 51] 0.77[42] 0.3 0.4 0

(0.84,0.9) (0.84,0.9) (0.55,0.8) (0.55,0.8) (0.66,0.85) (0,0.55) (0.35,0.45) (0,0.05)

Beta 0.75 0.75 0.85 0.7[50, 51] 0.75 0.3 0.4 0

(0.65,0.85) (0.65,0.85) (0.8,0.9) (0.55,0.8) (0.65,0.85) (0,0.55) (0.35,0.45) (0,0.05)

Gamma 0.75 0.75 0.7[49] 0.85 0.75 0.3 0.4 0

(0.65,0.85) (0.65,0.85) (0.55,0.8) (0.8,0.9) (0.65,0.85) (0,0.55) (0.35,0.45) (0,0.05)

Delta 0.75 0.75 0.7[49] 0.7[50, 51] 0.85 0.3 0.5 0

(0.65,0.85) (0.65,0.85) (0.55,0.8) (0.55,0.8) (0.8,0.9) (0,0.55) (0.35,0.6) (0,0.05)

Omega 0.75 0.75 0.7 0.7 0.75 0.85 0 0.5

(0.65,0.85) (0.65,0.85) (0.55,0.8) (0.55,0.8) (0.65,0.85) (0.8,0.9) (0,0.05) (0.35,0.6)

The first row gives the assumed increase of R0 relative to wild-type (WT) based on [54]. The rest give the immunity against new infection following vaccination or

previous infection. The upper row per label gives the median estimate; the lower row gives a confidence interval. The references are given in the superscript of the

median value. See the text for more details.

https://doi.org/10.1371/journal.pgph.0000412.t002
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term solution to the pandemic. Therefore, our graphs summarize which variants are of greatest

concerns to regions with different vaccination rates. RhV
e;t from Eq (6) does not easily allow one

to compare variants because it specifies both the group that is being infected as well as depends

on mitigation and seasonality. Therefore, we remove the time varying components, (1 −Mt)Lt,

and integrate RhV
e;t over the susceptible populations Sh:

rV
t ¼ ðð1 � MtÞLtÞ

� 1Eh½R
hV
e;t � ¼ N � 1l

VRWT
0

X

h2H

ð1 � gÞ
hV
jSh

t j; ð1Þ

where N is the total population size andH is the set of all infection histories. rV
t is the concep-

tual driver of outbreaks in our model as it represents the reproduction number of a variant

within a particular population by accounting for susceptibility due to immune evasion.

In order to plot rV
t as a function of the vaccination rate r 2 [0, 1], we need to consider how

the population composition would change and how this would be reflected in the size of our

compartments. As we have created a realistic population distribution for Austria on August 8,

2021, we want to maintain this realism over the range of possible infection rates. Therefore, we

split the population into two sets: vaccinated and unvaccinated. While descriptively clear, we

also give the precise set definitions using the notation introduced in Methods. The unvacci-

nated cohort C uv ¼ fC
h
2 C s:t:N \ h ¼ ;g and the vaccinated cohort

Fig 2. Basic reproduction number vs vaccine effectiveness for all variants included in our simulations: A(lpha), G(amma), D(elta), and O(mega). The

Omega variant is constructed to analyze hypothetical scenarios. Note that WT is only present in the history of previous infections.

https://doi.org/10.1371/journal.pgph.0000412.g002
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C va ¼ fC
h
2 C s:t:N \ h 6¼ ;g. As vaccines are assumed to be given independently of whether

or not someone has been previously infected and recovered, this maintains our population dis-

tribution. LetH uv andH va contain the partitioned histories corresponding to C uv and C va,

respectively. Lastly, let Nva ¼
P

h2H va
jSh

t j and Nuv ¼
P

h2H uv
jSh

t j be the size of the vaccinated

and unvaccinated susceptible populations, respectively. Note that N� Nva + Nuv as we ignore

the comparatively small set of people that are currently infected. We then have

rV
t ðrÞ ¼ l

VR0

r
Nva

X

h2H va

~ghVjSh
t j þ

1 � r
Nuv

X

h2H uv

~ghVjSh
t j

 !

: ð2Þ

Observe that Eq (2) is merely a convex combination between rV
t computed on two different

populations: those who are vaccinated (first term) and those who are not (second term). For

example, suppose that there is no resistance conferred by previous infection and perfect resis-

tance conferred by vaccination (~ghV ¼ 1; 8h 2H uv and ~ghV ¼ 0; 8h 2H va). In this case,

Eq (2) simplifies to rV
t ðrÞ ¼ l

VR0ð1 � rÞ, which is just the basic reproduction number times

the proportion of unvaccinated individuals.

Fig 3 shows how rVðrÞ changes as a function of the proportion of the population that is

fully vaccinated, r. In a highly vaccinated population, the Delta and Beta variants are estimated

to be similarly infectious, but they diverge significantly in populations with a lower percentage

vaccinated. The bands in Fig 3 capture the uncertainty in parameter values shown in Fig 2.

The ranking of risks only switches when a large proportion of the population is vaccinated

Fig 3. The reproduction number of variants accounting for immunity within the population, before mitigation and

seasonality. rV
t , defined by Eq (2), is shown as a function of the proportion of the population that is vaccinated. Omega

is a hypothetical variant with a higher immune escape: its relative advantage thus increases as vaccination level does.

Shaded regions correspond to 50% and 95% prediction intervals resulting from the uncertainty in viral parameters

summarised in Fig 2. The assumed composition of the population is depicted in Fig 16; it reflects Austria on August 8,

2020, with about 20% of population recovered from infections, mainly by WT (75%), Alpha (22%) and Delta (3%). For

simplicity, we assume that vaccination is independent of the infection history. Different population compositions and

immunity waning are addressed later (Figs 4 and 12).

https://doi.org/10.1371/journal.pgph.0000412.g003
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(thus increasing the average resistance against variants, which were highly transmissible in a

more naïve population). This area is unlikely to be reached without wide-spread and thorough

vaccination campaigns. For example, only 88% of the Austrian population is in the 12+ age

category, and nearly all of this category would need to be vaccinated to reach the change point.

In order to understand what a future outbreak could look like, we hypothesize a new vari-

ant, Omega, with lower basic reproduction number than the currently dominant Delta variant

but also higher immune escape. This configuration was chosen in order to create a realistic

problem setting that can continually affect regions even after successful vaccination campaigns

or after a high number of previous infections.

As Fig 3 uses the vaccine distribution and proportion infected as observed in Austria, it is

useful to further demonstrate what rVðrÞ could look like for other populations with different

vaccination campaigns as well as different histories of infections. For example, some countries

such as Singapore and New Zealand have had minimal local transmissions and thus little infec-

tion-induced immunity. Others, such as the United Kingdom, have experienced higher infec-

tion numbers and thus benefit from infection-induced immunity. The behavior of outbreaks

in these regions is governed by rVðrÞ in our models, as this summarizes the combined effect of

population make-up and variant characteristics. Thus plotting this statistic for relevant popula-

tion compositions gives insight into the variants that will be of highest risk in different regions.

Fig 4 shows four extremal points for populations and vaccination strategies: 0% vs 40%

Fig 4. rV
t accounts for a population-specific reproduction number of each variant. The charts represent the four vertices of the simplex of vaccine/infection

population space. Top row assumes no previous infections; bottom row assumes 40% have acquired immunity due to previous infections. The variants of previous

infections are assumed to be distributed according to the estimated proportions in Austria on August 8, 2021, given in Fig 16. We assume that vector vaccines (left)

confer lower resistance against infection than mRNA vaccines (right); see Table 2. Shaded regions correspond to 50% and 95% prediction intervals resulting from

the uncertainty in viral parameters summarised in Fig 2.

https://doi.org/10.1371/journal.pgph.0000412.g004
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previous infections and 100% mRNA vaccine usage vs. 100% vector vaccine usage. As Eq (2) is

linear, any point in-between these extremes can be faithfully represented as a linear interpola-

tion between the graphs in Fig 4.

For example, a country with an epidemic and vaccination history similar to the UK, is rep-

resented in the bottom-left image of Fig 4: it has a high degree of previous infections and has

relied heavily on vector vaccines throughout the first half of 2021. We see that Omega is the

variant of highest risk essentially throughout the entire domain of vaccination proportion.

Furthermore, given that we assume that vector vaccines do not protect well against infections

with Omega, this risk barely decreases as vaccinations increase, although we see the ordering

of risk change among the other variants as vaccination percentage changes. In the opposite

corner, we see a country which has had few previous infections and has mainly used mRNA

vaccines, such as Singapore. It is clear from Fig 4 that for low vaccination levels, all variants

pose a higher risk than they did to the United Kingdom (as there is no prior immunity due to

previous infections), with Delta being considerably riskier than Omega. When vaccination

rates are higher than approximately 70%, however, the ordering switches and Omega becomes

the riskiest—with the highest rV
t .

rV is the conceptual driver of outbreaks in our model as it represents the reproduction

number of a variant within a particular population, accounting for its susceptibility due to

immune evasion. Furthermore, herd immunity is understood in context of current mitigation.

This means that populations with greater acquired immunity (lower rV) can use fewer NPIs to

receive the benefit of dissipating epidemics. Populations with higher rV will need either need

higher NPIs in order to suppress an outbreak, or require very strict border controls to prevent

importing and allowing community spread of a high-risk variant.

Controller types

One long-standing question has been how best to control COVID-19 outbreaks when they

arise. This subsection explores which statistics should be considered when determining

whether to increase or decrease mitigation measures, particularly after the introduction of a

new SARS-CoV-2 variant with higher effective reproduction number. Two controller types are

considered that either respond to increases in case numbers (“reactive” control) or to increases

in an estimate of the reproduction number (“proactive” control). We find that using an esti-

mate of the effective reproduction number in addition to case numbers is a much more effi-

cient strategy.

Responding to the effective reproduction number further helps to address a potential endo-

geneity effect due to increasing prevalence of COVID-19, i.e., individuals may modify their

behavior when the situation either worsens or improves. Most public reporting discusses solely

case numbers, so it may be reasonable to assume that individuals base decisions more on either

absolute case levels or strong increases in cases. This can be problematic at the start of a wave if

case numbers are incredibly low: purely measuring absolute increases or case-number thresh-

olds may trigger a response too slowly. On the other hand, as the reproduction number is not

given the same attention in the media, individuals may not change behavior dramatically

when it changes. This helps connect NPIs to simulation dynamics, as individuals are not also

responding to the same statistics as our NPIs.

As mentioned above, we consider two specific control settings. The first, termed “reactive”,

only responds to case numbers. There is an upper bound, above which stricter NPIs are used,

and a lower bound, below which NPIs are relaxed. This is crafted to mimic the EU protocols

for measuring the riskiness of non-essential travel, which assign color codes to regions

depending on their publicly reported epidemiological data such as 14-day rate of cases, deaths,
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and/or tests administered [6]. Being below the lower boundary corresponds to being “green”

whereas above the upper corresponds to being “red”. In our results, we show a reactive con-

troller with two different sets of thresholds. The first set, referred to as “low-positivity”, uses a

lower bound of 25 cases per 100,000 and an upper bound of 150 cases per 100,000 (both mea-

sured over a 14-day period). This corresponds the recommendations for a low test-positivity

region. The second set, referred to as “high-positivity”, uses also a lower bound of 25 cases per

100,000 but an upper bound of 50 cases per 100,000 (both measured over a 14-day period).

This is far stricter and corresponds to recommendations for a high test-positivity region.

The second control, termed “proactive”, responds to both case numbers and an estimate of

the effective reproduction number R̂e;t given in Eq (14). The same thresholds for case numbers

are used as by the reactive control. There is also an upper threshold of 1.2 for R̂e;t. The decision

rule is as follows: increase restrictions if either R̂e;t or cases are above the corresponding upper

threshold. Conversely, restrictions are reduced if both R̂e;t < 1 and cases are below their lower

threshold. In all other instances, make no changes. For both controllers, when mitigation is

modified, it is assumed that a 20% change in mitigation is made (both when strengthening and

relaxing NPIs).

Simulation and control of Delta. We simulate two main scenarios corresponding to both

the growth of a new dominant variant and projections for infections after the variant perme-

ates the population. For concreteness and validation in this section, the new variant is the

Delta variant. We simulate infection trajectories using initial conditions when Delta accounts

for 20% of current cases. This simulation provides two benefits: first, it provides valuable

model validation by starting the simulation when 20% was accurate for Austria and comparing

simulations to observed cases and statistics; second, it furnishes a sample case for what can

happen when a new variant with similar transmissibility advantage reaches this threshold.

The simulation starts on June 12, 2021, as that corresponds to the AGES estimates for Delta

prevalence in Austria (see Fig G in S1 File). The same initialization process was used as dis-

cussed previously, merely until June 12 instead of August 8. All other parameters needed to

initialize our simulations are also taken from observed data on this day. This includes history

of new cases, the proportion of population that is vaccinated or previously infected, etc. Fig 5

shows that our model accurately forecasts the proportion of Delta cases as measured by AGES:

this holds true regardless of whether a proactive or reactive control is used, as seen in the bot-

tom panel Fig 6. The result is independent of the controller as the controller affects all variants

equally.

Simulation results for the low-positivity thresholds are shown in Fig 6, which shows daily

incidences (case numbers), the effective mitigation level ~Mt ¼ ð1 � MtÞ (reduction in R̂e;t due

to NPIs), and the current estimate of the effective reproduction number R̂e;t . These additional

graphs can be used to more precisely monitor both the simulated COVID-19 epidemic as well

as the control process. The first observation from Fig 6 is that cases under the reactive control

correctly match observed cases around the first peak in mid September. Its intervention his-

tory roughly corresponds to Austria’s, which loosened restrictions slightly over the summer.

Notably, the reactive controller begins increasing restrictions around this peak whereas Austria

did not. We note that the only real data used beyond the June 12 start date is the vaccination

schedule.

Both controllers relax restrictions at roughly the same point (early July), which approxi-

mately coincides with the start of the Green Pass program for European tourism on July 1.

Approximately one month later, however, the proactive control would increase mitigation

measures again to prevent the start of a new outbreak. As case numbers were so low during
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June, merely looking at new cases yields no increase in NPIs for some time. Alternatively,

increasing mitigation earlier stabilizes both the effective reproduction number as well as the

the number of new cases.

We can also precisely compare both the number of total infections as well as the number of

active cases, i.e., those people who would be placed in quarantine. Even if infections are mild

and do not require hospitalization, economies suffer if too many people are quarantined (iso-

lated) at any given time. We compute the total number of quarantined cases as merely the sum

of new cases over the preceding 10 days. In certain scenarios, more contacts of positive cases

may be placed in quarantine, but this in general would just lead to a multiple of the active

cases, leaving the conclusions intact. Proactive control not only reduces the median infections

and peak quarantine cases, but does so much more reliably: the observations cluster much

more strongly around the median. As seen in Fig 7, reactive control has not only higher

median values, but also a much more skewed distribution: it is possible to experience massive

spikes before the outbreak is brought under control. Given the skewness of the distributions

for the reactive controller, difference in medians is measured via a Wilcoxon Rank Sum test.

A more rigorous understanding of the relative efficiency of the controllers is provided by

comparing the distributions of the strengths of NPIs used by the two controllers: Fig 8 shows

the density of the difference between the observed mitigation and the “balanced” mitigation

level, ~M�
t , defined to be that value for which the effective reproduction number R̂e;t ¼ 1 in

Eq (14). Note that ~M�
t changes over time due to changes in variant prevalences, seasonality,

and acquired immunity in the population. As a reminder, lower values of ~Mt correspond to

stronger NPIs. Fig 8a shows that proactive control trades more time with moderate mitigation

for less time at extreme mitigation.

Next, we examine the robustness of these conclusions by using stricter case number thresh-

olds for the controllers as recommended for a higher positivity rate. Fig 9 shows that with stric-

ter case thresholds, simulated cases are much lower because NPIs are triggered more quickly

for both controllers. Yet, under a reactive controller, case numbers and the effective reproduc-

tion number exhibit a “yoyo” effect, in which they relatively rapidly cycle through periods of

Fig 5. The changing proportion of new Delta cases is accurately predicted. The simulation is initialized using information available on June 12, when the

observed proportion of Delta in Austria is 20%. Shaded regions correspond to 50% and 95% prediction intervals.

https://doi.org/10.1371/journal.pgph.0000412.g005
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increase and decrease. This effect can also be seen for the low-positivity thresholds of Fig 6, but

the timescale is much longer. In general, large peaks lead to sufficiently strict NPIs that subse-

quent peaks appear much later in our simulations. The proactive controller is much more effi-

cient and eliminates this behavior almost entirely. In particular, the left column of Fig 6 shows

on average less strict NPIs than Fig 9.

The box plots of total infections and peak quarantined cases (see Fig A in S1 File) show that

with stricter thresholds, median values are closer together. Reactive control fails to provide

reliable control, however, in that some simulated trajectories still produce many infections and

quarantined cases. The difference in median total infections per 100,000 is 53.2 (95% CI: 29,

Fig 6. Responding to the effective reproduction number is more efficient than only using case numbers. The top row shows the effective reproduction

number R̂e;t , middle row the effect of interventions on R̂e;t (where ~Mt ¼ 1 means no NPIs), and bottom row the daily incidence per 100,000 inhabitants. The

simulation starts on June 12, 2021 (black dashed vertical line) when Delta prevalence was at 20% and Alpha was the dominant variant. Initializing the model

requires use case numbers from the previous 13 days (gray dashed vertical line). The case thresholds are shown as dotted horizontal lines and coincide with

the WHO recommendations for change in NPIs when positivity rate is low [5, 6]); note that the thresholds, 25 resp. 150 per 100,000 within 14 days, are

divided by 14 as the y-axis shows daily incidence. The shaded regions gives the 50% (dark) resp. 95% (light) prediction interval. The 7-day moving average of

the actual incidence in Austria is given by the height of the gray, shaded area, and data past October is not shown as cases were allowed to dramatically

increase under relaxed NPIs. The simulation under reactive control accurately predicts new cases three months after initialization.

https://doi.org/10.1371/journal.pgph.0000412.g006

PLOS GLOBAL PUBLIC HEALTH Robust models of SARS-CoV-2 heterogeneity and control

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000412 May 9, 2022 12 / 35

https://doi.org/10.1371/journal.pgph.0000412.g006
https://doi.org/10.1371/journal.pgph.0000412


79) and the difference in median peak quarantined cases is 16.8 (95% CI: 14, 20). That being

said, the 97.5% quantile of peak quarantined cases of the reactive controller is twice as high as

that of the the proactive one. The mitigation graph for this setting is shown in Fig 8B. Proactive

control continues to use a more measured response, whereas reactive control prefers more

extreme mitigation levels. In fact, the proactive controller primarily holds ~Mt slightly below

~M�
t , which is sufficient to alleviate the epidemic without unnecessarily strict NPIs.

From the point of view of feasibility, the proactive controller makes far fewer interventions

than the reactive controller. While a strict reactive controller does keep case numbers low, this

results in interventions which occur almost every two weeks. This is the minimum period that

we specify in our model as a gap between interventions. It is unlikely that a government would

be able to so regularly change policy.

Simulation and control of a hypothetical variant Omega. This section introduces a new

hypothetical SARS-CoV-2 variant that occupies both a reasonable and empty region of the

infectiousness graph in Fig 3. The hypothetical variant, termed Omega, has a lower basic

reproduction number than Delta but evades immunity after vaccination or infection by older

variants more easily. This provides a scenario in which even a relatively highly vaccinated com-

munity will still experience an outbreak and the possibility to explore policies used during the

winter of 2021 and spring 2022. Omega is introduced as a weekly import, and for simplicity,

one case is imported per day. The distribution of imported infections has no effect on the

results, regardless if infections are imported daily or staggered throughout the week. All other

parameter and control settings are the same as in the previous subsection on Delta.

While this paper was under revision, variant Omicron has emerged and spread. As it is con-

ceptually similar to our Omega variant, we updated the resistance parameters for Omega to

mirror tentative estimates of these parameters for Omicron. Yet the lack of concrete values for

other parameters such as mean generation interval and waning of vaccine effectiveness against

Fig 7. Proactive control reduces total infections as well as peak numbers in quarantine. With proactive control, the extent on NPIs reflects not only the active

cases but also the estimated reproduction number R̂e;t (see section Controllers). The difference in medians and corresponding 95% confidence intervals for total

infections per 100,000 (over the simulated period) and peak quarantined cases per 100, 000 are, respectively, 509.6 (450, 580) and 108.2 (99, 118).

https://doi.org/10.1371/journal.pgph.0000412.g007
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Fig 8. Proactive control uses mitigation close to the “balanced” level and performs better under information

delay. We define the “balanced” mitigation level, ~M�, to be that value for which the effective reproduction number

R̂e;t ¼ 1. Note that lower values of ~Mt ¼ 1 � Mt correspond to stronger NPIs. In all settings, proactive control uses

mitigation much closer to the balanced value, while the reactive controller compensates for overly lax NPIs by using

overly strict NPIs. The degradation in information by using a larger delay (middle row) is seen in the additional

dispersion of the proactive mitigation density, though the modal value is still accurate. The time-courses for these

simulations are shown in Figs 6 vs. 9 (top), Figs 10 vs. 11 (middle), and Figs E in S1 File vs. Fig 13 (bottom).

https://doi.org/10.1371/journal.pgph.0000412.g008
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infection prevent us from making concrete claims about Omicron. As such, we have main-

tained the name Omega in order to emphasize the inability to properly mimic Omicron at this

point in time.

Fig 10 shows how the controllers manage the new Omega variant using the stricter, high-

positivity thresholds (25 and 50 cases/100,000 over 14 days). The first few months of each

image look qualitatively the same as those in Fig 9: the increased mitigation in the fall delays

Omega from being established. The second simulated wave, however, is driven by Omega due

to its immune escape. Given the population vaccination levels and compartment structure in

Austria, Omega out-competes Delta when the proportion of vaccinated individuals exceeds

approximately 30% (Fig 3), which happened in Austria in mid-April, 2021.

The largest difference between scenarios with and without Omega is the width of the infec-

tion prediction intervals for the reactive control. Not only does the reactive control allow larger

outbreaks, but it is unable to guarantee that all simulation paths are controlled. In

Fig 9. The proactive control is more efficient than reactive control even when incidence thresholds are stricter. Stricter thresholds are used such that

NPIs are increased when the incidence is 50 per 100,000 inhabitants over a 14 day period. This creates a “yoyo” effect under reactive control that is effectively

prevented with proactive control. All other parameters are as in Fig 6.

https://doi.org/10.1371/journal.pgph.0000412.g009
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approximately 2.5% of simulations, infections peaked at 40 cases/100,000. The proactive con-

trol was able to provide more efficient and reliable control on all simulation instances, effec-

tively preventing an outbreak. This can also be seen by its ability to keep the effective

reproduction number stable and near 1. The difference in median total infections per 100,000

is 297.1 (95% CI: 236, 361) and the difference in median peak quarantined cases is 20.9 (95%

CI: 13, 29). The difference in the 97.5% quantiles of predicted infections is over 2,000 cases/

100,000, while for predicted peak cases in quarantine the difference is over 400 cases/100,000

(see Fig B in S1 File).

As vaccinations increase, some governments may react to hospitalised (or ICU-hospital-

ised) incidence instead of case numbers. The rationale is that the controller decides based on

hospital capacity, rather than managing the cases. This is particularly enticing as the vaccines

reduce severe illnesses or hospitalizations even more than mere infections. Yet this results in a

larger delay between infections and actionable information, as there is a larger delay between

Fig 10. The reactive control fails to contain new variants that are competitive in highly-vaccinated populations. The figure shows a scenario with a

hypothetical variant Omega that has a smaller basic reproduction number than Delta but has a greater ability to escape immunity post vaccination or

infection by other variants (cf. Fig 3). Proactive control prevents an outbreak and uses fewer NPIs overall. Other parameters are the same as in Fig 9; note the

longer gaps between peaks, which are the result of larger preceding peaks and extended time under more NPIs.

https://doi.org/10.1371/journal.pgph.0000412.g010
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infection and hospitalization. While we do not model hospitalizations as this would require

adding an age structure to all of our compartments, we can increase the delay that the control-

ler uses for observing cases. This isolates the effect of the delayed information. If hospitaliza-

tions are a constant multiple of infections, then our results translate directly to that domain as

well.

Fig 11 shows simulation results with the hypothetical Omega variant, again using the strict,

high-positivity thresholds, but with a delay of 21 days (instead of 7 days). In this case, the con-

troller is using the same decision rules to increase or decrease NPIs, but the case data inform-

ing this decision is 21 days old. This corresponds to the approximate 2–3 week delay between

infection and hospitalization at ICU [17]. We see that the initial outbreaks are significantly

more pronounced (cf. Fig 10): both controllers begin the simulation by merely increasing miti-

gation as rapidly as possible. The subsequent outbreak, however, is entirely prevented by the

proactive controller, even with delayed information. In fact, the proactive controller using a 21

Fig 11. Controller with a larger delay leads to significantly more pronounced outbreaks, especially with reactive control. The figure shows a controller

with a 3-week delay. A similar delay would be expected when decisions are based on hospitalizations due to COVID-19 rather than on cases. We

(conservatively) assume the case thresholds would stay the same. Compare with Fig 10, where the controllers respond with a 1-week delay.

https://doi.org/10.1371/journal.pgph.0000412.g011
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day delay prevents outbreaks significantly better than a reactive controller with only 7 day

delay (cf. Figs B and C in S1 File).

One additional effect of delayed information is that restrictions are not lifted in a timely

manner. Both controllers maintain the restrictions longer than necessary. This gives rise to the

more diffuse mitigation density used by the proactive control as seen in Fig 8C and 8D. For

the reactive controller, this has the effect of delaying the Omega outbreak into the spring. In

reality, we expect a government to relax sooner, but at the cost of future waves also arriving

sooner.

Comparing the difference in peak quarantined cases carries additional meaning in this set-

ting as it is highly correlated with peak hospitalizations. While the medians are again similar,

the maximum peak quarantined cases over simulations are nearly twice as high for the reactive

controller as for the proactive controller (Fig C in S1 File). Proactive control suffers much less

from looking at more delayed data than reactive control. As such, this indicates that looking at

rates of change in hospital can be a good indicator, while the delay from reacting to actual hos-

pital utilization is costly.

Waning and boosting

In the simulation results presented above, populations always increase their immunity to new

infections over time, either through vaccination or through infections. In reality, the induced

immunity also wanes over time. We focus on simulations with the Omega variant, as it is

assumed to be most susceptible to waning. With waning immunity and boosting, the variant

risk as measured by rV changes non-monotonically over time (see Fig 12). While boosting rap-

idly increased in October and November, its strongest effect on rV appears delayed. This is

because all vaccinated individuals are eligible for the booster, not just those with waned immu-

nity. The sheer size of the vaccinated groups means many doses need to be administered before

the waned groups dramatically decrease in size. The effects of this changing risk profile can

also be seen in the infection outbreaks that occur in the simulations and the subsequent con-

troller behavior.

Fig 12. Waning and boosting change the population-specific reproduction number rV
t . Without waning, rV

t steadily decreases throughout the simulation due to

infections and vaccination. (a) Waning of immunity to Omega is strong enough to reverse this effect. (b) Booster shots compensate for immunity waning, and one

can clearly see the effect of the wide-scale boosting that rapidly increased in October and November.

https://doi.org/10.1371/journal.pgph.0000412.g012
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Fig 13 shows the simulations with waning but without boosting. Fig D in S1 File demon-

strates that adding boosting is sufficient to suppress the Omega outbreak in the winter. For

simplicity, we focus only on the strict case thresholds of 25 and 50/100,000/14 days. In the

summer, the relative advantage of Omega is too low to see an outbreak in the presence of rela-

tively strong mitigation. Waning immunity then leads to a larger outbreak of the Omega vari-

ant than observed without waning in Fig 10, though only under reactive control. The winter

outbreak is even suppressed when the proactive controller uses looser, 25–150/100,000/14

days case thresholds (Fig E in S1 File).

In terms of comparison of the controllers, the results of the previous section (without wan-

ing and boosting) still hold. There are significant differences in the medians for both total

infections and peak quarantined cases between reactive and proactive control. The differences

in the upper quantiles of these predicted distributions is even more extreme. We can see in

Fig 8E and 8F, that for both high and low thresholds, the reactive controller tends to use

extremely high or low mitigation levels, consistently failing to find a balance between suppress-

ing outbreaks and NPI use. In fact, switching to stricter case thresholds exacerbates this

problem.

Lastly, we briefly explored simulation dynamics when Omega is modified to spread even

more rapidly. In addition to the high immune escape of our baseline Omega variant, we

increased its base reproduction number to 2–matching Delta–and reduced the mean of the

generation interval from 4.6 days to 3 days (CI: 1.5, 4.5). Such a variant has a significant poten-

tial to cause extremely large outbreaks if not controlled efficiently. We confirmed that while

the proactive controller suppresses the potential outbreak, the reactive controller does not,

even with strict case control thresholds (see Fig F in S1 File).

Discussion

The model and simulation that we develop provides significant insight into efficient control

strategies of COVID-19 outbreaks. The key behavior which we wanted to capture in our simu-

lation was a complex interaction between diverse groups in a compartment model. Our simu-

lation creates compartments for various vaccines, multiple SARS-CoV-2 variants, and specifies

well-supported parameters for them all. The interaction rules between compartments are

transparent. This allows us to simulate complex scenarios in a realistic and dynamic setting:

COVID-19 epidemic spread in Austria. Having an appropriate model is an integral compo-

nent to controlling outbreaks and a prerequisite for regulating them efficiently [18]. This

reduces both human-health and economic costs [19, 20].

It is well known that timely restrictions are more efficient in controlling an epidemic [21,

22]; yet timely decisions can only be taken with a good controller. One can consider addressing

this in two distinct ways: 1, use stricter thresholds of a given statistic to motivate change; or 2,

use a better statistic, preferably informed by a model of the epidemic [18]. Our study demon-

strates that the second type of solution, using the effective reproduction number Re;t to guide

intervention decisions in addition to case numbers, is more efficient and successful at curbing

the epidemic. We provide a quantitative comparison of a continuous controller of two types—

one which only reacts to cases (reactive), and one which also reacts to the effective reproduc-

tion number (proactive). We show that the proactive controller is more efficient and effective

at controlling infection outbreaks than the reactive controller, even when it uses data that has a

larger delay (such as using Re;t estimated from hospitalizations). In contrast, the NPIs imposed

by the reactive controller are further away from the more efficient “balanced” minimum inter-

vention policy which keeps Re;t close to 1. By oscillating between over- and under-regulating,

the reactive controller fails to provide reliable control of new outbreaks: some simulation paths
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exhibit large spikes in infections and peak quarantined cases, even when the median values are

controlled.

While we specified the NPIs as imposed by proactive vs. reactive (governmental) control-

lers, our framework can be readily generalized to include adaptive human behavior in addition

to the NPIs imposed by the controller [4, 23, 24]. A potential limitation of our simulation is

our lack of observation level model which would allow us to simulate a fluctuating detection

ratio. Although some view positivity-rate to be informative about the detection ratio, we—in

the absence of a well-informed model for testing strategies and its saturation—instead consider

a range of case-based thresholds which span the gamut of positivity rate scenarios. In all of

these settings, we find consistent support for using a proactive control strategy that responds

to changes in the effective reproduction number. If the ascertainment bias for detecting cases

is changing, one can use Re;t estimated from the hospitalization rate after taking age structure

into account. While inducing NPIs when hospital capacity is reached is a severely delayed

Fig 13. Waning leads to a larger outbreak of the Omega variant under reactive but not proactive control. Parameters as in Fig 10, with waning immunity

but no boosting.

https://doi.org/10.1371/journal.pgph.0000412.g013
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reactive controller and performs poorly, reacting to Re;t estimated using such delayed informa-

tion still provides reasonably efficient control as shown in section Controller Types.

Our model does not explicitly incorporate any network structure for individuals’ interac-

tions; each individual in the simulation interacts independently with all other members. In

reality, infections take place in the household, work, and social environments. The different

cross-contamination rates in these environments lead to clusters of observed infections, not

only in terms of infections occurring, but also in terms of identifying them via contact tracing.

This is partially alleviated by our model accounting for super-spreading. Large super-spread-

ing events are often caused by high infectiousness coupled with a particular network structure.

By incorporating super-spreading natively in our model, we are able to produce cluster-like

effects due to people that are significantly more contagious than others. Furthermore, other

changes in network structure are captured by seasonality or mitigation; seasonality can be

caused by increased indoor interaction during winter months, and social distancing rules are

common NPIs.

Many parameters need to be specified in our model. These include the basic reproduction

numbers of variants, effectiveness of the vaccines against infection, resistance to reinfection

(including cross-infection by other variants), and the rate at which resistances wane. A natural

question is which of these has a stronger effect on the simulation. The difficulty in answering

lies in the distribution of the population across the compartments we describe. Populations

with lower vaccination rates but higher rates of previous infection will naturally be more sensi-

tive to cross-infection rates and vice versa. That is why we defined the rV parameter, which

characterizes a decisive component of the effective reproduction number. We believe rV is an

important summary parameter: a generalization of the so called vaccinated reproductive rate

[25, 26]. It depends on the basic reproduction number as well as the reduction in transmissibil-

ity arising from the (partial) immunity acquired by previous infections and vaccinations

within a particular population. It determines the relative dynamics of variants as the resistance

against them changes within the population. As such, the change of rV through time is a key

metric to assess the possibility of long-term coexistence of multiple variants [27, 28], in the

presence (cross-)immunity which can be waning at different rates.

The paper is not intended to forecast what the future of SARS-CoV-2 will bring: potentially

vaccine resistant variants, or variants with even higher base reproduction number, etc. The

next important VOC may well have different characteristics to the hypothesised Omega. It is

important to keep in mind though, that some VOCs which appear to be out-competed by the

currently dominant variant may have a competitive advantage later; this advantage is mea-

sured by rV , assuming that the variants have the same generation interval. The possibility of

change in the relative advantage between variants is especially relevant when the emerging var-

iant leads to more severe symptoms. The main claims of this paper, however, hold true for all

of these possibilities. Regardless of the process leading to future waves, one certainty is that

they will occur. In this eventuality, governments must design methods to identify and react to

changes in the pandemic. Our results focus on this common denominator.

Methods

New infections are assumed to be generated according to the momentum model of Johnson

et al. [1], which builds upon Cori et al. [29]. In the simplest version of the model, new infec-

tions It are the result of previous infections I1, . . ., It−1 via the following recursion:

It � PoissonðRe;t

Xn

m¼1

It� mwmÞ; ð3Þ
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where Re;t is the time-varying effective reproduction number at time t, w = (w1, . . ., wν) is the

generation interval, and ν is the maximum number of days for which someone is assumed to

be infectious. If Jm denotes the number of people infected by a specific person on the m-th day

after this person got infected, then we have for m 2 N

wm ¼
E½Jm�P1

l¼1
E½Jl�

:

We assume that a newly infected individual does not cause secondary infections on the

same day, corresponding to w0 = 0, and that infections do not occur after day ν. The generation

interval can be interpreted as the infectiousness profile of infected persons. We set w to be a

discretized gamma distribution with ν = 13, mean 4.46, and standard deviation 2.63. These are

values specific to Austria [30], and are similar to values determined elsewhere [31–33]. We

note that the framework is general enough to allow each variant to be specified with a unique

generation interval. This is potentially useful for modeling future variants. For example, the

expectation of the generation interval of the recently prominent Omicron variant (B.1.1.529) is

lower due to shorter latency [34]. This is illustrated in Fig F in S1 File.

The recursion in Eq (3) assumes that all people have the same infectiousness on day t. We

follow [1] and remove this assumption by explicitly drawing an infectiousness parameter for

each infected person from a fixed Gamma distribution with dispersion parameter k< 1. This

generalization allows for superspreading: the phenomenon of extreme heterogeneity in infec-

tiousness. We set k = 0.1, which corresponds to a setting in which 10% of infected individuals

cause 80% of new infections [7]. This is an integral component of the difficulty of controlling

COVID-19 outbreaks. Individual infectiousness can be aggregated over the infected, resulting

in the following process of new infections:

It � Poissonð
Xn

m¼1

yt� mwmÞ where ð4Þ

ys � GammaðIsk; rate ¼ k=Re;tÞ: ð5Þ

We generalize this model further in order to study the effect of combinations of variants,

previous infections, vaccination strategies, and NPIs—and interactions between them—on the

effective reproduction number Re;t . This is done by decomposing Re;t into many constituent

parts which depend on the compartments in our model. In order to describe this decomposi-

tion, we need notation for compartments.

Our model contains a set of compartments C . Each compartment C 2 C is a group of peo-

ple with a unique history of infection and vaccination. The history is encoded as a superscript

h: Ch
. The value of h contains both digits and capital letters, where digits correspond to vac-

cines and letters correspond to different SARS-CoV-2 variants (when possible, the first letter

of the variant name). For example, a group with label h = A1B contains people that were first

infected with variant A (Alpha), then vaccinated with vaccine 1, then contracted variant B
(Beta). For simplicity, the digit 0 is reserved for the compartment that has neither been vacci-

nated nor contracted SARS-CoV-2 of any form, i.e., C0
. As it will simplify our notation, we let

V be the set of infectious variants: {WT(wild-type), A(lpha), B(eta), D(elta), G(amma),. . .}. For

clarity, we note here that elements of V , denoted by V, are also valid histories h, e.g., h ¼ V
indicates those individuals who have only been infected with variant V.

The only characteristics of the history that affect the model are the total set of experiences

(vaccines or infections) as well as the final infection, as this determines the variant one is
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infectious with. Furthermore, reinfection with the same variant does not confer additional

benefit. Hence we can simplify histories to those that have no repeated capital letters. Lastly, it

will often be easier to write equations using the set of histories,H , instead of the correspond-

ing set of compartments, C . As h 2H is the identifier of a compartment, we will also at times

call it a compartment for ease of use.

Each group Ch
contains the total number of people with that history, both infected (Ih) and

recovered (Sh), which are subgroups with the same labels: Ch
¼ Ih [ Sh. The recovered (or vac-

cinated) subgroup is written as Sh to emphasize that they are again susceptible to infection,

though with a resistance parameter depending on h as described below. All are given sub-

scripts t, though for consistency with the generating equations, the subscripted groups have

different interpretations. Ch
t and Sh

t contain all people on day t with history h and the subset

that are recovered, respectively. Iht gives the number of new infections with history h on day t.
For simplicity, individuals recover ν + 1 days after being infected. We assume that when one is

experiencing an infection, they cannot become newly infected (or receive a vaccine). With

these simplifications, we have jCh
t j ¼ jS

h
t j þ

Pn

m¼1
Iht� m. Note that notation for Iht has been over-

loaded to either be the set of people with new infections with history h or the cardinality of this

set. This provides consistency with the generating Eq (4).

An important aspect of the simulation is that interaction groups are created dynamically.

For example, someone in Sh
t can be infected with a SARS-CoV-2 variant D or become vacci-

nated with vaccine 4. This person then moves from Sh
t to a new group with identifier hD or h4,

respectively. The dynamic generation of groups goes hand-in-hand with a dynamic change of

population characteristics which may require different mitigation strategies. Crucially, the new

group hD or h4 can have new resistances to infection.

There is a specific RhV
e;t for all compartments h 2H and all infectious variants V 2 V ,

where group Sh
t is susceptible to infection with V on day t. This can be interpreted as the effec-

tive reproduction number of variant V solely within group Ch
. As data are often reported in

terms of relative transmissibility of SARS-CoV-2 variants, each variant V has a basic reproduc-

tion number relative to that of the original SARS-CoV-2 variant given by

RV
0
¼ l

VR0 ¼ l
VRWT

0
. With this group-specific notation, we can define a decomposition of

RhV
e;t as

RhV
e;t ¼

~MtLtl
VR0

~ghV ð6Þ

where

• ~Mt ¼ ð1 � MtÞ, where Mt 2 [0, 1] is the effectiveness of NPIs at time t (mitigation of infec-

tiousness). ~Mt ¼ 1 corresponds to no mitigation (full infectiousness), whereas ~Mt ¼ 0

reduces new infections to 0.

• Lt is a seasonality factor at time t.

• ~ghV is the susceptibility of group h to infection with variant V. We consider ~ghV ¼ ð1 � ghVÞ

where ghV 2 ½0; 1� is the resistance of group Sh to being infected by variant V. The value of ghV

depends on the unique history h.

Similar to other human coronaviruses and influenza viruses [35, 36], it is widely believed

that SARS-CoV-2 follows a seasonal transmission pattern in temperate regions with transmis-

sions peaking during the winter. Possible explanations include different viral longevity due to

humidity and air temperature [37, 38], reduced host airway immune response in dry winter

months [36, 39], and increased indoor interactions during colder months. We model
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seasonality, Lt, as in [40] via a cosine transform:

Lt ¼ 1þ
�

2
cos 2p

t � tpeak
365:25

� �

� 1

� �

; ð7Þ

where � is the amplitude size and tpeak is the date when the transmission rate peaks. Following

[41], we assume that the seasonal reduction in transmission is 40% (� = 0.4); the lowest trans-

mission rate is set to July 1, while the highest transmission rate occurs on tpeak = January 1.

This is in line with the estimates for the general seasonality of other coronaviruses in temperate

climates [35].

The resistance parameters ghV evolve according to two simple rules. First, if a person with

history h is given a vaccine (e.g. 1), resulting in history g = h1, they have variant-specific resis-

tances equal to the maximum from those provided by h and 1. For example, history h may pro-

vide resistance.9 for infection from variant D and.98 for variant A. Vaccine 1, on the other

hand, provides resistance.95 for both. The resulting resistance for history g is thus.95 for D
and.98 for A. Resistance parameters are summarised in Fig 1 and are given in detail in Table 2.

Second, if a person with history h is infected by a variant V, resulting in history g ¼ hV, we

consider both the resistances of h and those conferred by V. For this new history g, the resis-

tance to an infection with SARS-CoV-2 variant V 0 is given by

ggV
0

¼ 1 � ð1 � ghV
0

Þð1 � gVV0 Þ; equivalently ð8Þ

~ggV
0

¼ ~ghV
0
~gVV0 : ð9Þ

Thus, the susceptibility to variant V0 declines as a product of the susceptibility to V0 conferred

by the history h, ~ghV
0

, and the susceptibility to V0 conferred by the infection V, ~gVV0 . Note that

repeated infections with the same variant, i.e. V 2 h, then resistances are not updated.

We note here that interactions between groups are only considered in terms of resistances,

not in terms of infectiousness; a vaccinated individual that nevertheless gets infected with vari-

ant V is considered equally infectious as an unvaccinated individual infected with variant V.

This is a simplification—in reality, the viral load in infected, vaccinated individuals appears to

decline faster (and is hence lower on average) [52]. In addition, for the same nasopharyngeal

viral load (Cts), the probability of detecting an infectious virus using cell culture is also slightly

lower [53]. While the model can be extended to include some estimate of lower infectiousness

for an infected, vaccinated group, we chose not to do so at present; we do not have a quantita-

tive estimate of how reduced infectiousness translates into reduction in transmission probabil-

ity in real-life settings, particularly as vaccinated individuals may behave differently.

Specifying the infections created by Ih is notationally far more complex than in Eqs (4) and

(5). The issue is that Ih is not solely responsible for creating new infections with this same his-

tory at time t: Iht . This problem arises even in the most simplistic multi-variant-vaccine setting.

Given compartments C0
, C1

, CA
, and C1A

, consider the effects of infection and vaccination. New

infections IAt are produced by both IA and I1A when they infect members of S0 or SA, while new

infections I1A are produced when either IA or I1A infect members of S1 or S1A. Vaccine 1 is

administered to a random member of either S0 or SA, and adds members to either S1 or SA1,

respectively. Given these complexities, we provide simple equations that only show the new

infections of a specific history. While it is possible to provide equations for the total new infec-

tions for a variant V, this would complicate our expressions and amounts to summing over

many different compartments that are distinct in our model. Later, Eq (1) provides a variant-

specific equation in order to compare infectiousness of variants in a population.
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For consistency of notation, our generating equations describe the number of new infec-

tions of a variant V within a compartment Cg
. To do so, consider all compartment histories

which are infectious with V : H V
¼ fh 2H s:t: h ¼ �hV; for some history �hg. Each Ch

cre-

ates new infections in Sg according to Eqs (4) and (5). We then sum over these groups:

IgVt � Poissonð ~MtLt~g
gVjSg

t jN � 1
X

h2H V

Xn

m¼1

y
h
t� mwmÞ where ð10Þ

y
h
s � GammaðIhs k; rate ¼ kðlVR0Þ

� 1
Þ ð11Þ

and N is the total population size, N ¼
P

C2C jCj.
Observe that y

h
s for h 2H V

, depends on RV
0
¼ l

VR0 instead of RgV
e;t . This is because y

h
s

gives the “native infectiousness” of—and is solely a property of—Ihs , separate from the interac-

tion between Ih and Sg
t in the environment experienced at time t. Similarly, the second sum of

the Poisson argument,
Pn

m¼1
y
h
t� mwm, does not depend on g because it represents the total

infectiousness of Ch
t . New infections, however, depend on other groups h that are infectious

with V and the environment through the remaining parameters in Eq (10). If we ignore sus-

ceptibility, mitigation, and seasonality, i.e. ~ggV ¼ ~Mt ¼ Lt ¼ 1, and the proportion of infected

people in the population is small, then N � 1
P

h2C~ghVjSh
t j � 1. In this case, Eq (10) reproduces

(4) in the original setting of the momentum model for a single variant [1].

Controllers

We assume a controller is interested in constraining the process of new infections,

It ¼
P

h2H Iht , and can manipulate ~Mt . Importantly, observed cases are distinct from the

underlying process of infections, It, as not all infections are observed. Our controllers observe

only a portion of infections as determined by the detection ratio, and then only some days

after infection occurred due to the delay between infection and observation. These parameter

values are discussed in Section Initializing the Simulation and Section Results.

Changes in non-pharmaceutical interventions (NPIs) are concretely implemented by set-

ting ~Mtþ1 ¼ d
~Mt in Eq (10). Thus, increase in NPIs such as mask mandates have the effect of a

multiplicative decrease in transmissibility. We have explicitly assumed a certain compound

effect of NPIs rather than specifying them. Our goal is not to prescribe which combination of

NPIs to use, but to demonstrate differences in efficiency of containment strategies that result

from using different statistics to guide the decision on the timing of the NPIs.

We consider two types of controllers which react to different statistics computed from case

data. Both increase and decrease mitigation, ~M , by some proportion δ 2 [0, 1] whenever they

intervene. The first controller changes the effect of NPIs when daily cases pass pre-specified

boundaries and is termed a “reactive” controller. This is a controller which increases NPIs

when reported daily cases are over some high threshold (e.g. 150 per 100,000 over the last 14

days) and decreases NPIs for case numbers below a low threshold (e.g. 25 per 100,000 over the

last 14 days) so long as case numbers are not increasing. A second type of controller, termed

“proactive”, also utilizes an estimate of the effective reproduction number.

Let �Re;t be the effective reproduction number given aggregate statistics which ignore com-

partment history and the type of infection. This is equivalent to taking expectations of our

group- and variant-specific RhV
e;t over individuals in the population as well as the infectiousness

of strains in V . The distribution over compartments weights by the size of the susceptible

group: |Sh|. Similarly, the distribution over variants weights by the current total infectiousness
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of the variant in the population:
P

h2H V

Pn

m¼1
y
h
t� mwm. We have:

�Re;t ¼ EVEh½R
hV
e;t �

¼W � 1N � 1 ~MtLt

X

V2V

X

g2H

~ggVjSg
t j
X

h2H V

Xn

m¼1

y
h
t� mwm

 !

where
ð12Þ

W ¼
X

h2H

Xn

m¼1

Iht� mwm: ð13Þ

Here, we have ignored the small number of currently infected individuals by dividing by N
instead of

P
h2H jS

hj.

Eq (12) provides a useful summary as an average effect implied by our model which

accounts for variant heterogeneity, population diversity, and superspreading. Unfortunately, a

controller cannot compute it as it depends on the unknown parameters θh, which describe the

“momentum” of the disease [1]. A feasible estimator does not consider y
h
t to be known, instead

using the expected total current infectiousness of V given l
V

and R0:

R̂e;t ¼W � 1N � 1 ~MtLt

X

V2V

X

g2H

~ggVjSg
t j
X

h2H V

Xn

m¼1

l
VR0Iht� mwm

 !

ð14Þ

We note that the statistic above is not meant to be an ideal estimate of the effective repro-

duction number Re;t, but instead functions as a computationally efficient way to track the

spread of infections in a way that is consistent with our simulation framework. While quanti-

ties such as jSg
t j are not known in practice, they can be estimated per variant and vaccine. In

fact, this is done when initializing our model and is described extensively in Section Initializing

the Simulation along with estimation of (14).

A “proactive” controller changes mitigation measures based on R̂e;t and case numbers.

Behavior is the same as for the reactive controller, except that there is also an upper bound

specified for R̂e;t: when the effective reproduction number is higher than this upper bound,

restrictions are increased. Reducing restrictions requires R̂e;t < 1 in addition to low case

numbers.

Vaccines and variants

Our model includes two types of vaccines and six SARS-CoV-2 variants. Vaccine types are

summarized in two groups: i) mRNA vaccines which include both Pfizer-BioNTech’s Comir-

naty (BNT162b2) and Moderna’s Spikevax (mRNA-1273); and ii) vector vaccines which

include AstraZeneca’s Vaxzevria/Covishield (AZD1222) and Janssen’s COVID-19 vaccine

(JNJ-78436735).

We consider six variants: the original wild-type (WT), Alpha (B.1.1.7), Beta (B.1.351),

Gamma (P.1), Delta (B.1.617.2) variants, and a hypothetical variant Omega. In general, their

relative advantage and effective reproduction number depend on the composition of the popu-

lation. The first row of Table 2 shows the assumed relative advantage of variant V over the

wild-type, l
V
¼ RV

0
=RWT

0
, in a naïve population. The values are computed from recent esti-

mates of RV
e =R

V0

e using GISAID sequences across different countries which are then aggre-

gated to produce a summary estimate for each variant [54]. In general, this value is thus

confounded with acquired advantage due to immunity escape, although the departure appears
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small within the time frame of the study (until June 3, 2021). The values are consistent with

estimates of l
V

assuming substantial immune escape [49, 55] and are on the lower boundary

generally accepted for the transmissibility advantage of Delta [56].

We assume that the basic reproduction number of the original strain, RWT
0

, is approxi-

mately 3.5. There is a wide range of estimates of RWT
0

, ranging from about 2 to 6.5 [57, 58]. As

RWT
0

depends on interaction networks in a society and will therefore plausibly differ between

countries and regions, we use an estimate of RWT
0

from the early Austrian case data [13, p.13],

corrected for the assumed seasonality of 40%.

Table 2 summarizes both the assumed effectiveness of the vaccines against infection with

SARS-CoV-2 variants as well as the estimates of resistance conferred by previous infection.

We use estimates from the recent analysis by [42] (United Kingdom) concerning infections

(with RT-qPCR’s Ct < 30) by the Alpha and Delta variants. While [42] assesses subjects PCR-

tested in weekly intervals, it is limited to people younger than 65 years old. We thus extend the

lower bound of effectiveness following [43], which also gives estimates for effectiveness of both

mRNA vaccines against (symptomatic) infections with Gamma/Beta variants (in Ontario,

Canada). We also use estimates from Brazil [48] for the reduction of transmission of the

Gamma variant following full vaccination with vector vaccines, and from Qatar [44] and

South Africa [47] for the Beta variant. For computational simplicity, we use the resistances

after a full vaccination (typically, two doses), and assign this 2 weeks after the first dose of a

vector vaccine or 3 weeks for an mRNA vaccine. This is because the error arising from assign-

ing full immunity 1–2 weeks after second dose would be larger than neglecting slightly lower

immunity between doses [42, 59–61]. We assume the percentage of people who do not follow

up with the second dose (when required) is sufficiently low that it can be ignored.

The reduction of probability of reinfection is based on the estimates by [42] for the WT,

Alpha, and Delta variants. We assume that the probability of reinfection is reduced by 87%

(84–90%) upon prior infection with the same variant, and it is reduced less (by 77%, (66–

85%)) for the Delta variant when the previous infection was by a different variant (typically

WT or Alpha). There is less reliable information on the reduction of re-infection for the Beta

and Gamma variants. We use the model-based estimate by [49] of 70% cross-immunity (55–

80%) for the Gamma variant. Based on the relative sensitivity of the variants to convalescent

sera [50, 51]—and in the absence of a direct estimate of reinfection protection for the Beta var-

iant based on a random cross-infection survey—we employ the 70% cross-immunity for the

Beta variant as well. The resistances are set to approximately 75% for cross-immunity between

(typically rare) combinations where we do not have direct data, and to approximately 85% for

reduction in reinfection by the same strain. See Table 2 for exact values. The last two columns

show resistances after immunity has waned, which we discuss in the next subsection.

Immunity waning and boosters

The waning of immunity from both vaccines and infections plays an increasingly important

role in the evolution of the COVID-19 pandemic [62, 63]. Our compartment model can be

generalized to this setting. We merely need a rule to determine when and how individuals

experience waning as well as an additional “intervention vaccine”, i.e. booster, given to previ-

ously vaccinated individuals.

One constraint is that our simulation does not track individuals, but groups. Therefore,

there is no concept of “time since fully vaccinated” that can be used for a gradual waning of

immunity. As such, waning needs to be implemented as a transition of people from a suscepti-

ble category Sh to a waned category, which will in general be written as Sh−. In order to account

for the different characteristics of vaccine and variant waning, this is represented in two
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different ways in our history notation. Infectious variants are still given capital letters, e.g. W
and A; after waning, however, these are changed to lower case, w and a. This changes a group

signature from h = WA to g = Wa. Note that the individual was infected by A before their resis-

tance from W infection waned. Vaccine waning is represented by a minus sign (overloading

the general notation from before), e.g. h = A1 becomes g = A1−. We assume for simplicity that

a waned group cannot wane a second time. Therefore our waned vaccine group A1− cannot

wane to a1−; waning only occurs for the most recent event experienced. We do not consider

this to be a significant oversimplification as the first waning event results in the majority of the

resistance reduction experienced and the use of booster vaccines returns people to effectively

un-waned groups.

The transition between groups happens at a single point in time as opposed to a gradual

decrease in immunity. On average, the waiting time before waning is chosen in order to mimic

a gradual, population-level decrease in immunity. All individuals in the susceptible subgroup

Sh have an exponential waiting time before being moved to the waned group. The waiting time

is determined by the number of days, in expectation, until a lower level of resistance is

observed. Each day we thus move Poisson(Sh
t =180) people from Sh to Sh−, such that, in expecta-

tion, all individuals in Sh
t have waned after a fixed waning period of 180 days. Specifically, we

assume that over the waning time of 180 days, the resistance to infection by Delta (and older

variants) after vaccination with two doses has declined to 40% (35–45%) for vector vaccines

and 50% (40–60%) for mRNA vaccines [45, 46]. For the hypothetical variant Omega, we

assume both lower initial resistance after vaccination (vector: 30% (0–55%); mRNA: 60% (50–

65%)) as well as stronger waning over 180 days (vector: 0% (0–0.05%); mRNA: 0.05% (0–

0.1%)). We assume that the immunity post-infection declines similarly as the one after getting

a vector vaccine (see Table 2).

The booster shot is implemented as a new vaccine that is only given to people who have

been vaccinated, regardless of their waned status. As the real “waning event” is not uniform

over the entire population and it is not known whether or not someone has truly waned when

given the booster shot, this is a parsimonious representation of the effects. For simplicity, we

group all booster vaccine combinations together, such that there isn’t any interaction effect

between the booster received and any previous infection or vaccination. As the booster is

implemented as a vaccine, resistances are updated according to the same rule: the resistance

after receiving the booster is given by the maximum, per variant, of current resistance and the

resistance provided by the booster. For Delta and older variants, the boosted resistance starts

at 96% (94–98%), and wanes only slightly over 6-months, to 85% (75–90%). For the hypotheti-

cal variant Omega, we use the tentative values for vaccine effectiveness based on resistance to

symptomatic infection with the Omicron variant, and assume boosted resistance starts at 70%

(60–80%) and over 6 months, wanes to 30% (20–40%)—see Table 2).

For a simple population consisting of a single group, we have an average resistance behav-

ing as in Fig 14. In practice, many waned compartments that receive the booster will have

identical resistances. This is because their resistances γ(h−)V are below those of the booster vac-

cine against all variants V, and because vaccines only raise resistances to a specified level. We

do not collapse the compartments, however, so that the history of a compartment can be

tracked in subsequent analyses.

Initializing the simulation

Given the initial conditions, Eqs (10) and (11) control all new infections and vaccine schedules

specify new vaccinations. To initialize the simulation, we need to specify an initial collection of

compartments C , a vaccine schedule, and a level of NPIs. These are chosen to most accurately
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represent the pandemic in Austria. Epidemiological data in Austria is gathered and provided

by AGES (Agentur für Gesundheit und Ernährungssicherheit GmbH), the Austrian agency for

health and food safety [9]. In addition to tracking the number of cases, hospitalizations, deaths,

and tests, AGES tracks the genome sequencing of SARS-CoV-2 samples gathered in Austria to

monitor the prevalence of variants of concern (VOC) [10]. The first confirmed case of the

Alpha variant in Austria was on January 3, 2021. A VOC sentinel system was subsequently

established with one PCR test lab per county submitting a random sample of SARS-CoV-2

specimens for complete genome sequencing.

VOC prevalence in Austria is published online and updated roughly every one to two

weeks. Fig 15 provides the historical reported variant prevalences. 2021 has already seen two

new variants emerge and quickly become dominant. In Austria, Alpha took approximately 15

weeks between emergence and dominance, whereas Delta took a mere 10 weeks. Both Beta

and Gamma variants were observed in Austria, though neither variant made serious headway

into the population.

When simulations are initialized for a given date, the relative size of recovered compart-

ments are computed using data from Fig 16. To compute the number of people who were pre-

viously infected, we must account for the detection ratio throughout the entirety of the

pandemic. Based on [64] and consistent with seropositivity in Austria from mid November

[65], we assume that 12% of the Austrian population was infected by the wild-type before Janu-

ary 1, 2021. For 2021, we specify the detection ratio which measures the (age-averaged) proba-

bility that an infected individual is diagnosed and appears in the official case statistics. Due to

increases in the availability and use of COVID-testing in Austria, we use the following esti-

mates for the detection ratio in 2021: 1/2.3 for January and February, 1/2 for March and 1/1.4

for April and beyond. These are consistent with model-based estimates for Austria which use

hospitalizations and deaths to learn about the proportion of unreported infections [12, 13].

We use a vaccine schedule to match that of Austria throughout the simulation period, as

the actual vaccination plan is considered to be a background setting of our model as opposed

to an intervention by a controller. We use the 7-day median of administered first doses during

Fig 14. Average resistance against Delta and the hypothetical variant Omega due to immunity waning in an mRNA-fully-vaccinated population.

https://doi.org/10.1371/journal.pgph.0000412.g014
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each calendar week [11] up until August 8, 2021. When simulating beyond the window of

available data, we use the latest 7-day median and administer this many doses until the

expected upper bound on vaccinations is reached. Currently, this bound is 85% of the popula-

tion. As of August 8, 2021, the distribution of administered vaccines was 72% Pfizer-BioN-

Tech’s Comirnaty, 10% Moderna’s Spikevax, 15% AstraZeneca’s Vaxzevria, and 3% Janssen’s

COVID-19 vaccine. Beyond August 8, the distribution of newly administered doses is 74%

from Pfizer, 3% Moderna, 22% Janssen, and 1% from AstraZeneca. The corresponding real

data for booster vaccines is used until mid December 2021. Vaccine booster shots began being

used in September 2021, with uptake increasing rapidly starting in October and November

2021.

A final step to calibrate our model with current case numbers is to set an initial effect of

NPIs. This is done by equating the implied reproduction number from the simulation, R̂e;t, to

the observed Re in Austria at the time the simulation starts. More concretely, R̂e;t from Eq

(14) is simplified at initialization as our compartment structure features no interaction groups.

We assume that all individuals that were previously infected with the wild-type or Alpha are

equally likely to have been vaccinated, while people with other infections were not vaccinated

as the other variants primarily appeared later. Tacitly, this assumes that those who were previ-

ously infected and then vaccinated do not receive an additional benefit due to their initial

Fig 15. Reported prevalence of different SARS-CoV-2 variants in Austria in 2021.

https://doi.org/10.1371/journal.pgph.0000412.g015
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infection. This is in line with the update rule for infection followed by vaccination, though

could also be considered a result of infection waning due to long-past infections. The number

of recovered individuals of each type, jSh
t j, is estimated by taking the cumulative cases for 2021

and scaling by the inverse detection ratio for each time period given above. A proportion of Sh
t

for wild-type and Alpha are removed from these groups and placed in the vaccinated groups.

This specifies jSh
t j and Iht� m for all individual variants and vaccines, allowing us to compute R̂e;t

up to the missing ~Mt term, which is calibrated to the observed Re.

In practice, similar steps are required whenever the model is used to simulate outbreaks

within a new country or region. As many parameters will not be know with certainty, particu-

larly at the start of an outbreak, the parameters values can be drawn randomly from suitable

ranges to capture the underlying uncertainty. This is done for all of our simulations as well.

Lastly, the high-level results remain consistent even when the parameter values are not known

with certainty: responding to changes in the effective reproduction number is more efficient

than merely considering observed case numbers.
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Fig 16. Estimate of the population composition in Austria on June 12 and August 8, 2021. Note that while Delta was dominant by August, 2021,

the absolute number of infections is comparably low.

https://doi.org/10.1371/journal.pgph.0000412.g016
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Methodology: Kory D. Johnson, Annemarie Grass, Mathias Beiglböck.
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31. Knight J, Mishra S. Estimating effective reproduction number using generation time versus serial inter-

val, with application to covid-19 in the Greater Toronto Area, Canada. Infectious Disease Modelling.

2020; 5:889—896. https://doi.org/10.1016/j.idm.2020.10.009 PMID: 33163739

32. Ganyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J, et al. Estimating the generation interval

for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Eurosurveillance.

2020; 25(17):2000257. https://doi.org/10.2807/1560-7917.ES.2020.25.17.2000257

PLOS GLOBAL PUBLIC HEALTH Robust models of SARS-CoV-2 heterogeneity and control

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000412 May 9, 2022 33 / 35

https://info.gesundheitsministerium.gv.at/data/COVID19_vaccination_doses_timeline.csv
https://info.gesundheitsministerium.gv.at/data/COVID19_vaccination_doses_timeline.csv
https://doi.org/10.1101/2021.03.10.21253251
https://epimath.at/static/EpiMathAustria_SEIR_documentation.pdf
https://hal.archives-ouvertes.fr/hal-03289443/
https://doi.org/10.1016/S0140-6736(21)01697-4
http://www.ncbi.nlm.nih.gov/pubmed/34388398
https://doi.org/10.1101/2021.05.27.21257936
https://doi.org/10.1016/S0140-6736(20)30566-3
http://www.ncbi.nlm.nih.gov/pubmed/32171076
https://doi.org/10.1080/00207727008920220
http://dx.doi.org/10.2139/ssrn.3834668
https://doi.org/10.1126/science.abb9934
https://doi.org/10.1016/S1473-3099(20)30162-6
https://doi.org/10.1016/S1473-3099(20)30162-6
http://www.ncbi.nlm.nih.gov/pubmed/32213332
https://doi.org/10.1126/scitranslmed.abg4262
http://www.ncbi.nlm.nih.gov/pubmed/34158411
https://doi.org/10.1073/pnas.1011250108
http://www.ncbi.nlm.nih.gov/pubmed/21444809
https://doi.org/10.1016/j.plrev.2015.07.006
http://www.ncbi.nlm.nih.gov/pubmed/26211717
https://doi.org/10.1098/rspb.1995.0164
http://www.ncbi.nlm.nih.gov/pubmed/8587880
https://doi.org/10.1016/0025-5564(93)90028-9
https://doi.org/10.1098/rsif.2006.0167
http://www.ncbi.nlm.nih.gov/pubmed/17210532
https://doi.org/10.1073/pnas.94.12.6571
http://www.ncbi.nlm.nih.gov/pubmed/9177259
https://doi.org/10.1093/aje/kwt133
http://www.ncbi.nlm.nih.gov/pubmed/24043437
https://doi.org/10.1016/j.idm.2020.10.009
http://www.ncbi.nlm.nih.gov/pubmed/33163739
https://doi.org/10.2807/1560-7917.ES.2020.25.17.2000257
https://doi.org/10.1371/journal.pgph.0000412


33. Hart WS, Miller E, Andrews NJ, Waight P, Maini PK, Funk S, et al. Generation time of the Alpha and

Delta SARS-CoV-2 variants. medRxiv. 2021. https://doi.org/10.1101/2021.10.21.21265216

34. Kim D, Jo J, Lim JS, Ryu S. Serial interval and basic reproduction number of SARS-CoV-2 Omicron var-

iant in South Korea. medRxiv. 2021; https://doi.org/10.1101/2021.12.25.21268301.

35. Monto AS, DeJonge P, Callear AP, Bazzi LA, Capriola S, Malosh RE, et al. Coronavirus occurrence

and transmission over 8 years in the HIVE cohort of households in Michigan. The Journal of infectious

diseases. 2020;. https://doi.org/10.1093/infdis/jiaa161 PMID: 32246136

36. Moriyama M, Hugentobler WJ, Iwasaki A. Seasonality of respiratory viral infections. Annual review of

virology. 2020; 7. https://doi.org/10.1146/annurev-virology-012420-022445 PMID: 32196426

37. Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol

and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England journal of medicine.

2020; 382(16):1564–1567. https://doi.org/10.1056/NEJMc2004973

38. Kwon T, Gaudreault NN, Richt JA. Seasonal stability of SARS-CoV-2 in biological fluids. Pathogens.

2021; 10(5):540. https://doi.org/10.3390/pathogens10050540 PMID: 33946190

39. Kronfeld-Schor N, Stevenson T, Nickbakhsh S, Schernhammer E, Dopico X, Dayan T, et al. Drivers of

infectious disease seasonality: potential implications for COVID-19. Journal of Biological Rhythms.

2021; 36(1):35–54. https://doi.org/10.1177/0748730420987322 PMID: 33491541

40. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of

SARS-CoV-2 through the postpandemic period. Science. 2020; 368(6493):860–868. https://doi.org/10.

1126/science.abb5793 PMID: 32291278

41. Gavenčiak T, Monrad JT, Leech G, Sharma M, Mindermann S, Brauner JM, et al. Seasonal variation in

SARS-CoV-2 transmission in temperate climates. medRxiv. 2021. https://doi.org/10.1101/2021.06.10.

21258647

42. Pouwels KB, Pritchard E, Matthews PC, Stoesser N, Eyre DW, Vihta1 KD, et al. Impact of Delta on viral

burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. medRxiv. 2021;

https://doi.org/10.1101/2021.08.18.21262237.

43. Nasreen S, He S, Chung H, Brown KA, Gubbay JB, Buchan SA, et al. Effectiveness of COVID-19 vac-

cines against variants of concern in Ontario, Canada. Medrxiv. 2021; https://doi.org/10.1101/2021.06.

28.21259420.

44. Abu-Raddad LJ, Chemaitelly H, Butt AA. Effectiveness of the BNT162b2 Covid-19 vaccine against the

B.1.1.7 and B.1.351 variants. New England Journal of Medicine. 2021; 385. https://doi.org/10.1056/

NEJMc2104974 PMID: 33951357

45. UK Health Security Agency. SARS-CoV-2 variants of concern and variants under investigation in

England: Technical briefing 33; 2021. Available from: https://assets.publishing.service.gov.uk/

government/uploads/system/uploads/attachment_data/file/1043807/technical-briefing-33.pdf.

46. Cohn BA, Cirillo PM, Murphy CC, Krigbaum NY, Wallace AW. SARS-CoV-2 vaccine protection and

deaths among US veterans during 2021. Science. 2021; p. eabm0620. https://doi.org/10.1126/science.

abm0620 PMID: 34735261

47. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19

Covid-19 vaccine against the B.1.351 variant. New England Journal of Medicine. 2021; 384(20):1885–

1898. https://doi.org/10.1056/NEJMoa2102214

48. Hitchings M, Ranzani OT, Dorion M, D’Agostini TL, de Paula RC, de Paula OFP, et al. Effectiveness of

the ChAdOx1 vaccine in the elderly during SARS-CoV-2 Gamma variant transmission in Brazil. medR-

xiv. 2021. https://doi.org/10.1101/2021.07.19.21260802

49. Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DdS, Mishra S, et al. Genomics and epidemiology

of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021; 372(6544):815–821. https://doi.org/

10.1126/science.abh2644 PMID: 33853970

50. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al. Reduced sensitivity

of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021; p. 1–7.

51. Bates TA, Leier HC, Lyski ZL, McBride SK, Coulter FJ, Weinstein JB, et al. Neutralization of SARS-

CoV-2 variants by convalescent and BNT162b2 vaccinated serum. Nature Communications. 2021; 12

(1):1–7. https://doi.org/10.1038/s41467-021-25479-6

52. Chia PY, Ong SWX, Chiew CJ, Ang LW, Chavatte JM, Mak TM, et al. Virological and serological kinet-

ics of SARS-CoV-2 Delta variant vaccine-breakthrough infections: a multi-center cohort study. MedR-

XiV. 2021; https://doi.org/10.1101/2021.07.28.21261295.

53. Shamier MC, Tostmann A, Bogers S, De Wilde J, IJpelaar J, van der Kleij WA, et al. Virological charac-

teristics of SARS-CoV-2 vaccine breakthrough infections in health care workers. medRxiv. 2021;

https://doi.org/10.1101/2021.08.20.21262158.

PLOS GLOBAL PUBLIC HEALTH Robust models of SARS-CoV-2 heterogeneity and control

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000412 May 9, 2022 34 / 35

https://doi.org/10.1101/2021.10.21.21265216
https://doi.org/10.1101/2021.12.25.21268301
https://doi.org/10.1093/infdis/jiaa161
http://www.ncbi.nlm.nih.gov/pubmed/32246136
https://doi.org/10.1146/annurev-virology-012420-022445
http://www.ncbi.nlm.nih.gov/pubmed/32196426
https://doi.org/10.1056/NEJMc2004973
https://doi.org/10.3390/pathogens10050540
http://www.ncbi.nlm.nih.gov/pubmed/33946190
https://doi.org/10.1177/0748730420987322
http://www.ncbi.nlm.nih.gov/pubmed/33491541
https://doi.org/10.1126/science.abb5793
https://doi.org/10.1126/science.abb5793
http://www.ncbi.nlm.nih.gov/pubmed/32291278
https://doi.org/10.1101/2021.06.10.21258647
https://doi.org/10.1101/2021.06.10.21258647
https://doi.org/10.1101/2021.08.18.21262237
https://doi.org/10.1101/2021.06.28.21259420
https://doi.org/10.1101/2021.06.28.21259420
https://doi.org/10.1056/NEJMc2104974
https://doi.org/10.1056/NEJMc2104974
http://www.ncbi.nlm.nih.gov/pubmed/33951357
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1043807/technical-briefing-33.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1043807/technical-briefing-33.pdf
https://doi.org/10.1126/science.abm0620
https://doi.org/10.1126/science.abm0620
http://www.ncbi.nlm.nih.gov/pubmed/34735261
https://doi.org/10.1056/NEJMoa2102214
https://doi.org/10.1101/2021.07.19.21260802
https://doi.org/10.1126/science.abh2644
https://doi.org/10.1126/science.abh2644
http://www.ncbi.nlm.nih.gov/pubmed/33853970
https://doi.org/10.1038/s41467-021-25479-6
https://doi.org/10.1101/2021.07.28.21261295
https://doi.org/10.1101/2021.08.20.21262158
https://doi.org/10.1371/journal.pgph.0000412


54. Campbell F, Archer B, Laurenson-Schafer H, Jinnai Y, Konings F, Batra N, et al. Increased transmissi-

bility and global spread of SARS-CoV-2 variants of concern as at June 2021. Eurosurveillance. 2021;

26(24):2100509. https://doi.org/10.2807/1560-7917.ES.2021.26.24.2100509 PMID: 34142653

55. Stefanelli P, Trentini F, Guzzetta G, Marziano V, Mammone A, Poletti P, et al. Co-circulation of SARS-

CoV-2 variants B.1.1.7 and P.1. medRxiv. 2021.

56. CDC. Delta Variant: Infections and Spread; 2021. Available from: https://www.cdc.gov/coronavirus/

2019-ncov/variants/delta-variant.html.
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