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ABSTRACT 
 

Artificial neural network (ANN) has the characteristics of self-adaptation, self-learning, parallel 
processing and strong nonlinear mapping ability. Compared with traditional experimental analysis 
modeling, ANN has obvious advantages in dealing with multivariable nonlinear complex 
relationships in the process of industrial catalyst design. In the face of the complex structure of 
catalyst, the unclear reaction mechanism and conditions, the use of neural network for small-scale 
experimental data analysis can save the time and energy invested in large-scale experimental 
research and obtain more perfect results in catalyst formulation optimization and condition 
selection. This paper summarizes the development of artificial neural network. The application 
principle, construction method and research progress of BP artificial neural network model in 
catalyst optimization design are summarized and analyzed. The development and innovation of 
artificial neural network in the future, as well as its continuous application and accumulation, will 
provide a powerful tool for the research of catalyst design and optimization in the future. 
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1. INTRODUCTION 
 
Catalyst is the heart of modern chemical industry, 
and the research and development of catalyst is 
one of its core problems. With the development 
of chemical industry, catalysts are widely used in 
petrochemical, coal chemical, chemical medicine, 
coating, grease and other industries. The output 
of chemical catalysts in China has been 
increasing year by year since 2010, and has 
reached about 41.5 tons in 2020. Due to the 
deteriorating ecological environment and the 
gradual strengthening of environmental 
protection, the requirements of downstream 
chemical industries for catalyst technology will 
continue to increase, and the R & D demand for 
new environment-friendly catalysts will also 
increase day by day [1,2]. Long-term studies 
show that there are many factors affecting the 
properties of catalysts. On the one hand, its own 
attributes such as formula metal, preparation 
methods, preparation conditions, activation 
conditions and other factors, on the other hand, 
the reaction conditions and operation will also 
affect its functional properties, which makes it 
difficult to study and predict the change trend of 
the properties of the catalyst under the parallel 
effect of various variables. The process of 
developing catalysts is long and complex [3]. 

 
Therefore, there is a certain contradiction 
between the increasing requirements for catalyst 
technology and the slow process of catalyst 
research and development. An efficient and 
convenient catalyst optimization design method 
is urgently needed to adapt to the current 
development trend of industrial catalysts. 

 
Artificial Neural network (ANN) is a kind of 
network model which can be applied to deal with 
practical problems of multiple nodes and multiple 
output points. It abstracts human brain neurons, 
forms different network according to different 
connection modes, which has strong information 
processing ability. In the process of catalyst 
optimization design, reaction process is often 
complicated and affected by many factors, which 
makes traditional research usually has long 
experimental period and high cost. While, 
artificial neural network, with its intelligent 
characteristics of self-organization, self-learning 
and self-adaptation, has been more and more 
widely explored and applied in the catalyst 
design process, providing a convenient and 
feasible method for the problems that are difficult 
to solve in the traditional design process.  
 

In this paper, the development of artificial neural 
network is summarized, and the research 
progress of BP artificial neural network model in 
catalyst optimization design is reviewed. 

 

2. DEVELOPMENT OF ARTIFICIAL 
NEURAL NETWORK 

 
2.1 Artificial Neural Network 
 
At present, the definition of artificial neural 
network is not unified. According to Hecht 
Nielsen, an American neural network scientist, 
neural network is a computer system formed by 
multiply very simple processes units connected 
with each other in some way. The system 
processes information by making dynamic 
response to continuous or intermittent input 
states. Integrating the sources, characteristics 
and various explanation of artificial neural 
network, it can be simply expressed as an 
information processing system designed to 
imitate the structure and function of human brain 
[4]. 
 
Artificial neural network (ANN) has begun since 
1940s. Pitts [5] proposed the first neuron model 
(M-P model) in 1943, taking the threshold 
function as the main characteristic of neuron 
calculation, which started the exploration of 
artificial neural network. In 1951, Hebb [6] 
proposed the Hebb rule of connection weight 
enhancement: in neural networks, the strength of 
synaptic connections between neurons is 
variable, and such changes controls the mutual 
excitation of neurons. Hebb rule lays a 
theoretical foundation for constructing neural 
network model with learning ability. At the end of 
1960s, Rosenblatt [7] developed a perceptual 
model named Mark I based on the M-P model, 
which was the first artificial neural network with 
learning ability constructed physically. After 
experiencing the low tide of development, in 
1982, Hopfield neural network (HNN) was 
proposed for the first time, which made a 
nonlinear mathematical generalization of the 
information storage and extraction function of 
artificial neural network, and proposed dynamic 
equation and learning equation, which provided 
theoretical guidance for the construction and 
learning of artificial neural network [8]. In 1986, 
Werbos et al. [9] made a detailed analysis of the 
error back propagation method of multi-level 
feedforward network with nonlinear continuous 
transfer function, namely BP algorithm, and 
proposed an effective algorithm for weight 
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adjustment for the first time. BP algorithm is one 
of the most widely used neural network 
algorithms. 
 

Since the mid-1990s, the research of artificial 
neural network has attracted extensive 
exploration. While the existing theories have 
been deepened and popularized, new theories 
and models have been proposed and expanded, 
such as optical neural network (PNN), chaotic 
neural network, fuzzy neural network and so on. 
Neural network is an interdisciplinary science, 
the development of computer hardware, the 
accumulation of big data and the combination of 
other knowledge and technology have brought 
broad space for the development of neural 
network in the new era [10]. 
 

In 2006, Hinton et al. [11] proposed the landmark 
Deep Belief Network (DBN), and described a 
new method to convert high-dimensional data 
into low-dimensional code by training a multi-
layer neural network. A network with a small 
central layer is used to reconstruct high-
dimensional input vectors [12], which has led to a 
boom in the application of deep learning in 
various scenarios. So far, ANN has been 
successfully applied to intelligent driving [13-15], 
aerospace [16,17], signal processing [18-20], 
process control and optimization [21-23], safety 
protection [24-26], image processing [27-29], 
forest pest protection [30,31], time series 
forecasting [32-34] and so on.  
 

2.2 BP Neural Network 
 

At present, artificial neural network (ANN) has a 
variety of relatively perfect network models, such 
as MLP neural network, RBF neural network, BP 
neural network and so on. Among them, BP 
neural network is the most widely used in 
catalyst optimization design due to its excellent 
nonlinear mapping ability, good generalization 
ability and fault tolerance ability. The structure 
and operating principle of BP neural network will 
be introduced below. 
 

The basic structural unit of neural network is 
node (perceptron), which simulates the neuron of 
human brain. Its function is to accumulate the 
input variables with weights and thresholds, 
which are transformed by the activation function 
and then obtain the output variables. 
 

BP neural network is a kind of forward feedback 
artificial neural network, which is composed of 
multi-layer nodes. Its structure usually includes 
input layer, hidden layer and output layer. The 
output layer is the targets to be predicted. While, 

the input layer is the variables which affecting the 
output. However, the determination of hidden 
layer is complicated and may have one or 
multiple layers. The number of nodes is not only 
related to specific problems, but also closely 
related to the number of input and output nodes 
of the network. And the selection of hidden layer 
nodes affects the learning effect, convergence 
speed and generalization ability of the network. If 
the number of nodes in the hidden layer is too 
small, the input data cannot be fully learned by 
the network and the prediction accuracy is 
reduced; while if the number of nodes in the 
hidden layer is too large, the learning efficiency, 
the fault tolerance and generalization may 
become poor, and prone to over-fitting 
phenomenon [35]. Therefore, the correct 
selection of node number of hidden layer has a 
crucial influence on the performance of network 
model. 
 

The selection of hidden layer nodes can be 
divided into two steps. Firstly, the empirical 
formula is used to infer the reasonable range of 
the number of hidden layer nodes. And then 
increase the nodes number from less to more, 
trial and error experiments are carried out to 
finally determine the optimal number of hidden 
layer nodes. At present, the common empirical 
formulas are [36,37]: 
 

                                                 (1) 
 

                                                         (2) 
 

  

                
                          

(3) 
 

  is the number of hidden layer nodes,    is the 

number of input nodes,    is the number of 
output nodes and   is constant. 
 

After determining the number of nodes in the 
input layer, hidden layer and output layer, the 
basic structure of BP neural network model is 
constructed, which is as shown in the Fig. 1. 
 

 
 

Fig. 1. BP neural network structure 
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  、  、   represent the input signal, the output 

signal of hidden layer and the final output signal, 

i、j、k represent the number of nodes of each 

layer,     and    represent the weight of each 

layer, and f is the activation function. 
 
The operating principle of BP neural network: 
The operation of BP neural network is mainly 
composed of two parts: learning stage and 
testing stage. In the learning stage, the weights 
and thresholds of input data of each layer are 
initialized first, and the training data is 
propagated forward. Input data    of different 

nodes are given their respective weights    and 

thresholds   , and the output data    of the 

hidden layer is obtained through the activation 
function   of the hidden layer. The formula is as 
follows: 
 

         
                          (4) 

 
Similarly, the output data of each node of the 
hidden layer, as input values, enter the node of 
the output layer and are given different weights 
and thresholds. Finally, the output data    is 

obtained through the activation function   of the 
output layer, and the formula is as follows: 
 

         
                            (5) 

 
The hidden layer and the output layer can adopt 
the same or different activation functions. In 
specific applications, different activation function 
combinations often have different influences on 
the global calculation efficiency and the 
convergence degree of the results. The standard 
BP neural network usually selects Sigmoid 
function as the activation function to simulate the 
characteristics of neurons, and the formula is as 
follows: 
 

     
 

                                                  (6) 

 

The output range is [0,1] and its derivative is 

               . It is very similar to the real 
response of biological neurons, and has a very 
simple derivative, which is very beneficial for the 
learning of BP neural network. However, when 
the net input of neurons is too large or too small, 
the output will enter the saturated region, prone 
to non-convergence phenomenon. Therefore, in 
the practical application process, in addition to 
the commonly used Sigmoid function, many 
other activation functions such as Tan-Sigmoid, 
linear function, trigonometric function, bipolar 
function and so on will also be selected. 

The forward propagation of the input node data 
through the neural network generates the 
predicted value, which is compared with the 
output target value to calculate the error. The 
error between the predicted value and the target 
value is propagated back from the output layer, 
and the weights and thresholds between different 
layers are corrected according to the first 
derivative of the error to the weights and 
thresholds. The process above is repeated to 
make the errors meet the set requirements. The 
correction formula for weights and thresholds is 
as follows: 
 

          
     

       
                

                                                              (7) 

 

         
     

      
                     

(8) 
 

          
     

       
                

                                                             (9) 

 

         
     

      
              

                                                           (10) 
 
When the error between the predicted value of 
training data and the target value reaches the set 
requirement (or the maximum number of 
calculation times), the learning stage ends, and 
the neurons of the hidden layer and output layer 
of BP neural network get the optimal weight and 
threshold value.  
 
The above traditional neural network algorithm is 
based on the error between the predicted value 
and the actual value, and repeatedly revises the 
weights and thresholds of the hidden layer and 
the output layer to realize the optimization of the 
network. This algorithm has clear physical 
concept and strong universality, but there may be 
problems in the application such as slow 
convergence speed, local optimal solution, poor 
generalization ability, etc. Therefore, many 
experts and scholars put forward a variety of 
methods to improve the algorithm performance. 
Currently, the commonly used optimization 
algorithms of BP neural network include BP 
neural network with additional momentum term 
combined with adaptive learning rate [38,39], 
GA-BP neural network combined BP neural 
network with genetic algorithm [40], PSO-BP 
neural network combined BP neural network with 
particle swarm optimization [41], BP learning 
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algorithm improved by Levenberg-Marquardt 
method [42,43]. Due to the different inherent 
characteristics of the problems to be simulated, 
the improvement effect of each optimization 
method is limited. At present, no universal 
optimization algorithm is found that is most 
suitable for solving all problems. Usually, the 
optimal learning algorithm is selected by 
comprehensive analysis and comparison of the 
convergence rate and prediction accuracy of 
each algorithm in the specific catalyst neural 
network. 
 

 
 

Fig. 2. Flow chart of BP neural network 
operation 

 

In the testing stage, a group of experimental data 
different from the training data in the learning 
stage is input into the neural network for 
prediction, and the error between the predicted 
value of the test sample and the real value 
obtained from the experiment is compared to 
verify the prediction performance of the neural 
network. If the error is within the allowable range, 
the trained BP neural network model has met the 
practical application requirements. 
 

3. RESEARCH STATUS OF CATALYST 
OPTIMIZATION DESIGN 

 

The comprehensive evaluation indexes of 
industrial catalysts are activity, selectivity and 
service life. Catalysts may also be required to 
have good heat resistance, mechanical strength 
and resistance to carbon deposition for specific 
reactions under specific circumstances. 
Traditional catalyst design optimization mainly 
relies on the theoretical guidance of systematic 

catalyst design monographs, such as Catalyst 
Manual [44], as well as the specific experimental 
studies. Most of the catalyst design theories are 
summarized based on the accumulated research 
experience of predecessors, and provide limited 
guidance for the selection of catalyst 
components. However, when it comes to specific 
reactions, the determination of preparation 
methods and operating conditions of catalysts 
usually rely on a large number of synthesis and 
characterization experiments. 
 
In recent years, the rapid development of artificial 
neural network (ANN) technology provides an 
efficient and convenient way for catalyst 
optimization design. Combined with artificial 
neural network technology, based on its 
nonlinear mapping ability and the characteristics 
of self-organization, self-adaptation and self-
learning, parallel processing the effects of 
complex and diverse influencing factors on 
catalyst performance can obtain a more accurate 
relationship model, achieve a certain precision 
prediction with less date in a short time, which 
improves the efficiency of catalyst research and 
development. 
 

4. THE OPTIMIZATION DESIGN OF 
CATALYST BASED ON BP NEURAL 
NETWORK 

 
4.1 Construction and Application of 

Catalyst Network Model 
 
In practical application, there are many factors 
that affect the operation efficiency and prediction 
accuracy of the artificial neural network catalytic 
model: the selection of training data, the number 
of the input layer, output layer and hidden layer 
nodes, the combination of activation function of 
the hidden layer and output layer, the learning 
algorithm adjust the weights and thresholds of 
the input data of each layer, as well as the initial 
weights and thresholds setting, in different 
application situation the highest fitness choice is 
usually different. Usually, the optimal BP neural 
network structure is determined by experimental 
analysis, i.e., to explore the optimal selection of 
various variable factors in the BP neural network 
structure in turn, build neural networks with 
multiple structures at this variable level, use the 
same data to train and test different neural 
networks, and compare the error between the 
predicted value and the real value obtained from 
the experiment. Considering the prediction 
accuracy and calculation efficiency of neural 
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network, select the optimal structure and apply it 
to the optimization design of specific catalyst. 
     
After the neural network model of catalytic 
process is established, the influence weight of 
input factors on catalyst performance can be 

analyzed according to the model，according to 

which we can  determine the main factors, 
eliminate irrelevant factors and clarify the 
optimization direction of catalyst. The commonly 
used methods include Pad method, weight 
method and Perturb method [45,46]. The 
established neural network model can also be 
used to simulate the catalytic process and find 
the optimal catalyst formula and process 
conditions. The values of various factors 
affecting the properties of catalyst can be 
collected by itemized intensive scanning 
technology as the prediction samples of the 
model. By comparing the predicted values of 
each group of data, the parameters of the 
optimal formula conditions can be selected. The 
other widely used method is that directly find the 
optimal catalyst formula and process conditions 
based on the global optimization ability of the 
combination of BP neural network and genetic 
algorithm or particle swarm optimization 
algorithm. 
 

4.2 Application of ANN in the 
Optimization Design of Catalyst 

 

Abbasi et al. [41] applied the artificial neural 
network (ANN) model linked with genetic 

algorithm (GA) to optimize of synthesis 
parameters in nanostructure La1−xBaxNi1−yCuyO3 
catalysts used in the reforming of methane with 
CO2. The input layer contains 4 neurons, mole 
fraction of La, mole fraction of Ni, calcination 
temperature and reaction temperature and the 
output layer contains one neuron, conversion of 
methane as output variable. According to CCD, 
20 sets of experiments designed, the date 
obtained from experiment will be used in the train 
and test of neural network. 
 
To select the most appropriate topology, a small 
number of neurons in the hidden layer were used 
initially and then gradually added to reach the 
optimal number of the hidden layer neurons.     
Fig. 3 represents the average relative derivation 
(ARD) for different number of neurons in the 
hidden layer. The hidden layer with 11 neurons 
has the lowest amount of ARD, thus select 
topology 4:11:1 with a high performance as the 
most appropriate topology. 
 
The activation function is selected by comparing 
six different combinations of activation functions 
of hidden layer and output layer of Tan-Sigmoid 
(Tan-S), Log-Sigmoid (Log-S) and linear function. 
Fig. 4 presents the results of this search. As 
shown in Fig. 4, the network composed of the 
hidden layer Log-S transfer function and the 
output layer Tan-S transfer function together 
predicted the results more accurately (exhibiting 
high R

2
), which means that these transfer 

functions perform well. 

 

 
 

Fig. 3. Determination of optimum number of neurons for selected algorithms [41]  
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Fig. 4. Comparison of different transfer functions for hidden and output layer [41] 
 

 
 

Fig. 5. Schematic of a multilayer perceptron with one layer of hidden neurons [41] 
 

The Levenberg–Marquardt method was used for 
network training because of its convergence 
speed. The preliminary structure of artificial 
neural network is tested by multiple groups of 
data, and the prediction performance meets the 
requirements. And based on the weight 
calculation formula, it is concluded that the La 
mole fraction is demonstrated as the most 
significant factor, which is used for further 
optimization of the catalysts. 
 
After obtaining a relatively perfect artificial neural 
network structure, combined with GA genetic 
algorithm, the La mole fraction, Ni mole fraction 
and calcination temperature were optimized in 
order to improve the methane conversion. 
According to the GA optimization, 
La0.9965Ba0.0035Ni0.6028Cu0.3972O3 catalyst with 
calcination temperature of 734.45 °C was found 
to be the optimal catalyst. The predicted value of 
the neural network is consistent with the 

experimental results, and the catalyst obtained 
by optimizing the artificial neural network can 
significantly improve the methane conversion 
rate. 
 
Huang et al. [46] optimized the formulation of 
Fe3O4 composite oxide catalyst based on BP 
neural network. According to the previous 
experience, the metal elements that can be used 
for Fe3O4 composite oxide are screened, select 
the first auxiliary elements (Cu, Ni, Zr, Pt, Co) 
and its ratio to Fe, the second auxiliary element 
(Cr, W, Al, V, Ti) and its ratio to Fe, drying 
temperature and roasting temperature as the 
input neurons of the artificial neural network, 
while the service life of catalyst and hydrogen 
generation rate are the output neurons. The 
orthogonal experimental table with six factors 
and five levels is obtained by CCD method, 
catalyst samples are prepared and analyzed 
according to this table. The obtained data are 
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used for the subsequent selection and 
optimization of neural network structure. The 
simple Sigmoid function is selected as the 
activation function, while the number of hidden 
layer nodes and learning algorithm are 
determined by comparing the training results. 
 
In order to determine the number of hidden layer 
nodes, the catalyst data obtained from 
experiments were used as training samples of 
neural network to evaluate the generalization 
ability of four different hidden layer structure 
networks. The structural with too few nodes in 
the hidden layer is not accurate enough in 
simulation; the structure with too many hidden 
layer nodes reach over fitting and has poor 
generalization ability; for the structure of three 
hidden layers, the amount of calculation is too 
large, so they are excluded. Finally, the 6:12:4:2 
structure was selected to model the formula of 
methane hydrogen production reaction system 
based on Fe3O4 composite oxide. For the 
selection of learning algorithm, the traditional BP 
algorithm, the BP algorithm improved by moment 
method and the BP algorithm improved by 
Levenberg Marquardt method are tested by the 
previously obtained catalyst sample data. 
According to the training results, the 
convergence effect of Levenberg-Marquardt 
method is far better than that of traditional BP 
algorithm and moment method, so the LM 
method was chosen for modeling. After the basic 
structure of the neural network was determined, 
the formula model of Fe3O4 composite oxide was 
optimized with genetic algorithm. The life of 
Fe3O4 composite oxide and hydrogen generation 
rate were combined to form a single objective 
optimization problem. All catalyst formulations 
and experimental evaluation results obtained in 
each round of optimization were added to the 
training set of the next round, and the initial 
weights were updated. The more learning rounds, 
the more accurate the network model. After six 
rounds of optimization, some of the optimized 
formula of Fe3O4 composite oxide is chosen      
as the satisfactory formula, which is shown in 
Table 1. 
 
Hadi et al. [47] adopted ANN-GA model, to 
design and optimize of M-Mn/H-ZSM-5 (M: Ce, 
Cr, Fe, Ni) catalysts in conversion of methanol to 
propylene. The predicted and experimental 
values of propylene selectivity of the optimal 
catalyst were 54.3% and 54.8%, respectively, 
which shows that there exists a good agreement 

between model prediction and experimental data 
for the optimal catalyst which demonstrates the 
consistency of ANN-GA models and the catalyst 
performance was improved. Günay et al. [48] 
applied neural network to the design of Pt-Co-
Ce/Al2O3 catalyst for selective CO oxidation in 
hydrogen-rich streams, using the artificial neural 
network model with 6:5:2:1 structure to 
determine the weight of Pt as the main 
influencing factor, and the catalyst was optimized 
accordingly. Fu et al. [49] used improved BP 
neural network to predict Ni/A12O3 catalytic          
CH4-CO2 reforming reaction, and the results 
showed that reaction temperature and Ni            
loading had a great influence on reforming 
reaction, indicating the direction for catalyst 
optimization. Hossain et al. [50] used artificial 
neural network to model of hydrogen-rich    
syngas production from methane dry reforming 
over novel Ni/CaFe2O4 catalysts, demonstrated 
the viability of employing the ANN-based models 
for predicting hydrogen-rich syngas with 
excellent ability to represent the 
interrelationships between the input and the 
output parameters. Baroi et al. [51] used artificial 
neural network to assist the development of 
ozone catalyst SrFexZr1-xO3. Under the optimal 
formulation and process conditions, m-cresol 
conversion rate and TOC removal rate were 
significantly improved. Bahrami et al. [52] 
investigated the catalytic performance of CeO2-
MOx (0.25) (M = Mn, Fe and Cu) mixed oxide nano 
catalysts in NO + CO reduction. To model and 
optimize the NO and CO conversions, they used 
the approach established by combining an 
artificial neural network with a genetic algorithm. 
NO conversion predicted through ANN-GA 
system and obtained via experimental at 300°C 
were 91% and 90%, respectively, which implied 
that there is a good agreement between them for 
optimal catalyst. Yang et al. [53] applied a neuro-
genetic machine learning system (ANN-GA) to 
optimize and predict the optimum preparation 
parameters for the precipitation synthesis of 
high-efficiency silver-doped manganese oxides 
(Ag/MnOx) for toluene total oxidation. The 
resulting Ag/MnOx-GA catalyst achieved the 

lowest T50 (CO2) of 206℃ comparing with other 
methods. 
 

It can be seen that artificial neural network has 
been widely used in catalyst design and 
optimization, and has played a significant role in 
finding the optimal catalyst formulation and 
process conditions. 
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Table 1. Some of the optimized Fe3O4 composite oxide formula [46] 
 

Catalyst Influencing factors Experimental results 

M1-M2-
FeOx 

M1/Fe M2/Fe T1/℃ T2/℃ CL/h FRH/mmolmin
-1
(g Fe)

-1
 

MHB-1 Zr-W-FeOx 10.63 5.86 150 600 3.68 1.16 

MHB-2 Ni-Cr-FeOx 15.65 16.27 150 600 3.58 1.19 

MHB-3 Pt-Cr-FeOx 2.49 12.53 150 600 4.46 1.16 

MHB-4 Pt-W-FeOx 3.12 6.51 150 600 3.82 1.18 

MHB-5 Zr-Al-FeOx 16.53 10.94 150 600 4.19 1.15 

MHB-6 Zr-Ti-FeOx 10.85 13.05 150 600 3.96 1.15 

MHB-7 Cu-W-
FeOx 

14.59 8.42 150 600 4.00 1.14 

MHB-8 Ni-V-FeOx 9.37 5.67 150 600 4.10 1.16 

MHB-9 Co-W-
FeOx 

6.81 16.29 150 600 3.59 1.09 

MHB-10 Zr-Ti-FeOx 4.52 12.83 150 600 3.80 1.11 

 

5. CONCLUSION AND OUTLOOK 
 
This paper reviews the development of artificial 
neural network and its application in catalyst 
optimization design and emphatically introduces 
the principle of BP neural network and the 
process of catalyst model building based on the 
neural network. The application of BP and its 
improved neural network in the optimization 
design of catalyst has guiding role. In the face of 
the complex structure of catalyst, the unclear 
reaction mechanism and conditions, the use of 
neural network for small-scale experimental data 
analysis can save the time and energy invested 
in large-scale experimental research and obtain 
more perfect results in catalyst formulation 
optimization and condition selection. But the 
research level of artificial neural network still 
needs to be improved, on the one hand, the 
number of nodes in the hidden layer and the 
determination of the activation function are not 
yet under the guidance of universal theory and 
need to be further studied and improved, on the 
other hand, the topology structure and learning 
algorithm of the neural network need to be 
optimized at a higher level with faster 
convergence speed. More accurate neural 
networks also depend on developments in 
neuroanatomy and related mathematics. In 
conclusion, with the continuous improvement of 
the technical reliability of artificial neural network, 
the theory and practice of catalyst optimization 
design based on artificial neural network will 
provide a powerful tool for the research of 
industrial catalysts. 
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