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Abstract

In this paper, an SEIR epidemic model with nonlinear incidence is considered. First, we formulate
the model and obtain its basic properties. Then, we find the equilibrium points of the model, the
disease-free and the endemic equilibrium. The stability of disease-free and endemic equilibrium
is associated with the basic reproduction number R. If the basic reproduction number R < 1, the
disease-free equilibrium Ē is locally as well as globally asymptotically stable. Moreover, if the
basic reproduction number R > 1, the disease is uniformly persistent and the unique endemic
equilibrium E∗ of the system is locally as well as globally asymptotically stable under certain
conditions. Finally, the numerical results justify the analytical results.

Keywords: SEIR epidemic model; nonlinear incidence rate; local stability; global stability; Lyapunov
function; LaSalle’s invariance principle.
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1 Introduction

The global health crisis of the Coronavirus Covid-19 has brought out the role of mathematical models
in political and health decision-making. Since the outbreak began in Wuhan, several modeling
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groups around the world have reported estimates and forecasts for the COVID-19 outbreak in the
scientific literature. Depending on the models and methods used, the results obtained show large
variations (estimated basic reproduction number varies from 2 to 6, peaks reached, total number
of infected people varies from 50,000 to millions, etc.). This problem of variability can be partially
explained by the lack of reliable data, in particular before January 23, 2019, when Wuhan, the
epicenter of the epidemic, was quarantined and locked down. With the exception of confirmed
case data which is used for model calibration, an inadequate choice of model used for the problem
at hand, a model calibration problem, the use of data from different sources may explain these
variations. Mathematical models of infectious diseases [1, 2, 3, 4, 5], initially purely theoretical
tools, began to be put into practice with the problem of AIDS in the 1980s. During the Covid
19 pandemic, mathematical models experienced a boom during the taking of decision relating to
public health policies and also contributed to the epidemiological surveillance of the disease. Long
before that, since the Spanish influenza pandemic, compartmental models have been used to aid
in contagion probability calculations. These models divide the population into epidemiological
classes. Compartmental models make it possible to estimate how the number of individuals in each
compartment varies over time. By abuse of notation, the letter used to represent a compartment
is also used to represent the number of individuals in the compartment. For example, S is used in
an equation to represent the number of susceptible individuals. A more rigorous formulation, and
sometimes employed, is to use S(t) instead of S, which explains that it is a function and that the
number depends on time t. To know how the number of individuals in a compartment varies over
time, it is necessary to know how to deduce the number of individuals from one stage to another,
that is to say from time t at time t + 1. This difference in the number of individuals is given by
the derivative. Thus, dS/dt corresponds to the balance of the number of individuals in relation to
compartment S. A negative scale means that individuals leave, while a positive scale means that
individuals enter. The dI/dt scale is called incidence because it represents the number of infections
of the disease. The main indicator in the spread of an epidemic is the force of infection or the
rate at which a susceptible person becomes infected. The prediction models are mainly based on
deterministic principles such as SIR or SEIR [6, 7, 8, 9, 10, 11]. Recent SARS-CoV-2 models are
often derived from the SIR model by adding a population of infected non-infectious E (or exposed)
individuals who are therefore not contagious. In this article, we have introduced the SEIR model
and we have discussed the effect of health measures by illustrating their impact on the epidemic
evolution. Several research teams are interested in the potential of mathematical models in the
development of new tools and methods to control the spread of a disease [12, 9]. To conclude, it
should be remembered that models remain mathematical tools that help predict the evolution of
a given epidemic; they are certainly precise and rigorous, but calculated at a given moment, with
given parameters and in a rather ideal context. Modeling the incidence rate, the virus evolution
(possible mutation) and all other parameters to the situation is extremely difficult. This is why, like
surveys and statistics, it is necessary to use them, to know how to read them but also to understand
them. We must therefore find the right balance between: seriously considering the epidemic models
obtained after modeling and taking a step back from the situation.

Therefore, in the present article, we shall revisit and analyse the SEIR model for COVID-19
dynamics but with a non-linear incidence rate. The structure of this article is as follows. The
basic model and its properties are discussed in Section 2. In Section 3, the local stability of the
disease-free and the endemic equilibrium points is discussed. The global stability of the disease-free
and the endemic equilibrium points is discussed in Section 4. Finally, in section 5, numerical results,
validating the theoretical findings, are presented.
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2 Mathematical Model and Results

We recall that the SEIR model has four population classes (S(t) for susceptible, E(t) for exposed,
I(t) for infected, and R(t) for recovered class). The SEIR model, however relatively simple, therefore
makes it possible to obtain a first model of an epidemic and to observe the impact of health
measures on its development. In this paper, we assume that recovered individuals will not re-infect
in the future. Consider ρ to be the constant recruitment rate of susceptible due to new born and

immigration. The saturated incidence rate considered here is nonlinear of Monod’s form
µI

k + I
where µ and k are two constants. σ1 is the rate at which an exposed individuals become infectious
and σ2 is the rate at which infectious agents recover their health. Therefore 1/σ1 represents the
average latency time spent in compartment E and 1/σ2 represents the average duration elapsed in
compartment I. ds, de, di and dr represents the death rates of susceptible, exposed, infected and
recovered individuals, respectively.

The SEIR model for COVID-19 dynamics that we considered in this paper is given by the following
ordinary differential equations:

Ṡ = ρ − µSI

k + I
− dsS,

Ė =
µSI

k + I
− σ1E − deE,

İ = σ1E − σ2I − diI,

Ṙ = σ2I − drR,

(2.1)

with positive initial condition (S0, E0, I0, R0) ∈ R4
+ .

Table 1. Description of the variables and parameters for model (2.1)

S(t) Susceptible individuals ρ Susceptible recruitment rate
E(t) Exposed individuals σ1 Infection rate of exposed individuals
I(t) Infected individuals σ2 Recover rate of infected individuals
R(t) Recovered individuals ds Death rate of susceptible individuals

de Death rate of exposed individuals
di Death rate of infected individuals
dr Death rate of recovered individuals

In order to prove that the system (2.1) is well-posed, it is necessary that the state variables
S(t), E(t), I(t) and R(t) remain non-negative for all t ≥ 0. Let d = min(ds, de, di, dr), then

Proposition 1. The compact set Ω1 = {(S,E, I,R) ∈ R4
+ / S+E+I+R ≤ ρ

d
} is positively invariant

for system (2.1).

Proof. Since Ṡ|S=0 = ρ > 0, Ė|E=0 =
µSI

k + I
> 0, İ|I=0 = σ1E > 0 and Ṙ|R=0 = σ2I > 0 then the

solution of system (2.1) is non-negative.

By summing all equations of system (2.1), one obtains, for T = S+E+I+R− ρ

d
, a single equation:

Ṫ = Ṡ + Ė + İ + Ṙ
= ρ− dsS − deE − diI − drR
≤ ρ− dS − dE − dI − dR

≤ d(
ρ

d
− S − E − I −R)

≤ −dT.
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Hence

T (t) ≤ T (0)e−dt. (2.2)

Since all variables are non-negative then all variables are bounded and thus Ω1 is invariant for model
(2.1).

For any disease, a major health issue is whether it is spreading in the population and at what speed
(doubling time). This amounts to calculating the average number of people that an infectious person
infects while they are contagious. This rate is called the basic reproduction number [12], and is
denoted R (ratio). This rate is intuitively easy to understand, but if it is linked to the pathogen,
its calculation is complex. R should be used with caution, as it can lead to misinterpretations, both
on the real role that R has on the spread of an infectious disease and on the ability to control an
epidemic. The calculation of the R presupposes a population where all the individuals are healthy,
except the infectious individual introduced (patient zero). If R < 1, then the infected individual
infects less than one other individual on average, which means that the disease is disappearing from
the population. If R > 1, then the disease spreads in the population and becomes epidemic.
Determining R as a function of the model parameters thus makes it possible to calculate the
conditions under which the disease spreads. As van den Driessche and Watmough [13] note, ”in the
case of a single infected compartment, R is simply the product of the infection rate and its average
duration”. When the model is simple, it is often possible to find an exact expression for R. In our
case, the basic reproduction number R is given by

R =
ρσ1µ

kds(de + σ1)(di + σ2)
. (2.3)

Proposition 2. System (2.1) admits a unique disease-free equilibrium Ē = (
ρ

ds
, 0, 0, 0) and a unique

endemic equilibrium E∗ = (S∗, E∗, I∗, R∗) with S∗, E∗, I∗, R∗ > 0.

Proof. Equilibria of system (2.1) satisfy
0 = ρ− µSI

k + I
− dsS,

0 =
µSI

k + I
− σ1E − deE,

0 = σ1E − σ2I − diI,
0 = σ2I − drR,

(2.4)

which reduces to 

S =
ρ

ds +
µI

k + I

=
ρ(k + I)

ds(k + I) + µI
,

E =
µSI

(k + I)(de + σ1)
=

ρµI

(de + σ1)(ds(k + I) + µI)
,

I =
σ1E

di + σ2
=

σ1ρµI

(di + σ2)(de + σ1)(ds(k + I) + µI)
,

R =
σ2

dr
I.

(2.5)

From the third equation of (2.5) one deduces that

I(di + σ2)(de + σ1)(ds(k + I) + µI) = σ1ρµI.

Since all parameters are non-negative then either I = 0 or

(di + σ2)(de + σ1)(ds(k + I) + µI) = σ1ρµ.
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• If I = 0 then S =
ρ

ds
, E = 0 and R = 0. This equilibrium known as the disease-free

equilibrium denoted here by Ē = (
ρ

ds
, 0, 0, 0).

• If I ̸= 0, let the function g given by

I =
σ1ρµ

(ds + µ)(di + σ2)(de + σ1)
− kds

(ds + µ)

=
kds

(ds + µ)

( σ1ρµ

kds(di + σ2)(de + σ1)
− 1
)

=
kds

(ds + µ)
(R− 1).

Since R > 1, then the system admits endemic equilibrium E∗ = (S∗, E∗, I∗, R∗) where

I∗ =
kds

(ds + µ)
(R− 1),

S∗ =
ρ(k + I∗)

ds(k + I∗) + µI∗
,

E∗ =
ρµI∗

(de + σ1)(ds(k + I∗) + µI∗)
,

R∗ =
σ2

dr
I∗.

(2.6)

Next, the local stability behaviours of equilibria are discussed with respect to the value of the basic
reproduction number R.

3 Local Stability Analysis

Theorem 1. If R < 1 , then the equilibrium point Ē is locally asymptotically stable. However, if
R > 1, Ē is unstable.

Proof. Let (S,E, I,R) be a solution of system (2.1), then the Jacobian matrix is given by:

J =


−(ds +

µI

k + I
) 0 − µkS

(k + I)2
0

µI

k + I
−(de + σ1)

µkS

(k + I)2
0

0 σ1 −(di + σ2) 0
0 0 σ2 −dr

 .

In particular its value at the equilibrium point Ē is

J̄ =


−ds 0 − µρ

kds
0

0 −(de + σ1)
µρ

kds
0

0 σ1 −(di + σ2) 0
0 0 σ2 −dr


The matrix J̄ admits two eigenvalues given by ρ1 = −ds < 0 and ρ2 = −dr < 0 and two other
eigenvalues of the sub-matrix

Sj0 =

(
−(de + σ1)

µρ

kds
σ1 −(di + σ2)

)
.

60



Alhmadi; ARJOM, 18(2): 56-68, 2022; Article no.ARJOM.80976

The trace is given by

Trace (Sj0) = −(de + σ1 + di + σ2) < 0

and the determinant is given by

Det (Sj0) = (de + σ1)(di + σ2)−
σ1µρ

kds
= (de + σ1)(di + σ2)(1− R).

Therefore all eigenvalues have negative real parts and the equilibrium Ē is locally asymptotically if
R < 1. However, if R > 1, at least one eigenvalue has non negative real part and the equilibrium Ē

is therefore unstable.

Theorem 2. The endemic equilibrium E∗ is locally asymptotically stable if R > 1.

Proof. For the equilibrium point E∗, the Jacobian is given by

J∗ =


−(ds +

µI∗

k + I∗
) 0 − µkS∗

(k + I∗)2
0

µI∗

k + I∗
−(de + σ1)

µkS∗

(k + I∗)2
0

0 σ1 −(di + σ2) 0
0 0 σ2 −dr


and its characteristic polynomial is then

P (X) =

∣∣∣∣∣∣∣∣∣∣∣

−(X + ds +
µI∗

k + I∗
) 0 − µkS∗

(k + I∗)2
0

µI∗

k + I∗
−(X + de + σ1)

µkS∗

(k + I∗)2
0

0 σ1 −(X + di + σ2) 0
0 0 σ2 −(X + dr)

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
−(X + ds) −(X + de + σ1) 0 0

µI∗

k + I∗
−(X + de + σ1)

µkS∗

(k + I∗)2
0

0 σ1 −(X + di + σ2) 0
0 0 σ2 −(X + dr)

∣∣∣∣∣∣∣∣∣∣
= −(X + dr)

∣∣∣∣∣∣∣∣
−(X + ds) −(X + de + σ1) 0

µI∗

k + I∗
−(X + de + σ1)

µkS∗

(k + I∗)2

0 σ1 −(X + di + σ2)

∣∣∣∣∣∣∣∣
= (X + dr)(X + ds)

∣∣∣∣∣∣ −(X + de + σ1)
µkS∗

(k + I∗)2

σ1 −(X + di + σ2)

∣∣∣∣∣∣
+

µI∗

k + I∗
(X + dr)

∣∣∣∣ −(X + de + σ1) 0
σ1 −(X + di + σ2)

∣∣∣∣
= (X + dr)(X + ds)

(
(X + de + σ1)(X + di + σ2)−

σ1µkS
∗

(k + I∗)2

)
+

µI∗

k + I∗
(X + dr)(X + de + σ1)(X + di + σ2).
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Then ρ1 = −dr < 0 is an eigenvalue. The other three eigenvalues are the roots of

Q(X) = (X + ds)
(
(X + de + σ1)(X + di + σ2)−

σ1µkS
∗

(k + I∗)2

)
+

µI∗

k + I∗
(X + de + σ1)(X + di + σ2)

= X3 +X2(ds + de + σ1 + di + σ2 +
µI∗

k + I∗
)

+X
(
ds(de + σ1) + ds(di + σ2) + (de + σ1)(di + σ2)

− σ1µkS
∗

(k + I∗)2
+

µI∗

k + I∗
(de + σ1 + di + σ2)

)
+ ds(de + σ1)(di + σ2)−

dsσ1µkS
∗

(k + I∗)2

+
µI∗

k + I∗
(de + σ1)(di + σ2)

= X3 + a2X
2 + a1X + a0

where

a2 = ds + de + σ1 + di + σ2 +
µI∗

k + I∗
,

a1 = ds(de + σ1) + ds(di + σ2) + (de + σ1)(di + σ2)−
σ1µkS

∗

(k + I∗)2
+

µI∗

k + I∗
(de + σ1 + di + σ2),

a0 = ds(de + σ1)(di + σ2)−
dsσ1µkS

∗

(k + I∗)2
+

µI∗

k + I∗
(de + σ1)(di + σ2).

Using the fact that
µk

(k + I∗)2
≤ µ

k + I∗
,
σ1µS

∗

k + I∗
= (de +σ1)(di +σ2), and therefore (de +σ1)(di +

σ2)−
σ1µkS

∗

(k + I∗)2
≥ 0 , we obtain

a2 = ds + de + σ1 + di + σ2 +
µI∗

k + I∗
> 0,

a1 = ds(de + σ1) + ds(di + σ2) + (de + σ1)(di + σ2) −
σ1µkS

∗

(k + I∗)2
+

µI∗

k + I∗
(de + σ1 + di + σ2)

> ds(de + σ1) + ds(di + σ2) +
µI∗

k + I∗
(de + σ1 + di + σ2) > 0,

a0 = ds((de + σ1)(di + σ2) −
σ1µkS∗

(k + I∗)2
) +

µI∗

k + I∗
(de + σ1)(di + σ2)

>
µI∗

k + I∗
(de + σ1)(di + σ2) > 0,

a2a1 − a0 =
(
ds + de + σ1 + di + σ2 +

µI∗

k + I∗

)(
ds(de + σ1) + ds(di + σ2) + (de + σ1)(di + σ2)

−
σ1µkS

∗

(k + I∗)2
+ f(I∗)(de + σ1 + di + σ2)

)
− ds(de + σ1)(di + σ2) +

dsσ1µkS
∗

(k + I∗)2

−
µI∗

k + I∗
(de + σ1)(di + σ2)

>
(
ds + de + σ1 + di + σ2 +

µI∗

k + I∗

)(
ds(de + σ1) + ds(di + σ2) +

µI∗

k + I∗
(de + σ1 + di + σ2)

)
−ds(de + σ1)(di + σ2) +

dsσ1µkS
∗

(k + I∗)2
−

µI∗

k + I∗
(de + σ1)(di + σ2)

>
(
ds + de + σ1 +

µI∗

k + I∗

)(
ds(de + σ1) + ds(di + σ2) +

µI∗

k + I∗
(de + σ1 + di + σ2)

)
+

dsσ1µkS∗

(k + I∗)2
> 0.

Then Routh Hurwitz criterion states that all eigenvalues have negative real parts. Therefore, the
equilibrium E∗ (exists if R0 > 1) is locally asymptotically stable. The proof is completed.

In the next section, the global stability behaviour of the equilibrium points will be carried out.
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4 Global Stability Analysis

Lemma 1. Ω2 = {(S,E, I, R) ∈ R4
+ / S + E + I +R ≤ ρ

m
;S ≤ ρ

ds
} is a positively invariant set for

system (2.1).

Proof. It is already proved that Ω1 is a positively invariant set for system (2.1). Note that

Ṡ(t) = ρ− dsS − f(I)S ≤ ρ− dsS < 0 for S(t) >
ρ

ds
therefore lim inf S(t) ≤ ρ

ds
.

For all ξ > 0, and for all S0 ≥ 0, ∃T ≥ 0 such that S(t) ≤ ρ

ds
+ ξ, ∀t ≥ T . This completes the

proof.

Theorem 3. Ē is globally asymptotically stable if R ≤ 1. However Ē is unstable if R > 1.

Proof. Consider the Lyapunov function:

F1 = σ1E + (de + σ1)I.

The time-derivative of F1 is given by:

Ḟ1 = σ1Ė + (de + σ1)İ

= σ1(
µSI

k + I
− (de + σ1)E) + (de + σ1)(σ1E − (di + σ2)I)

= σ1
µSI

k + I
− (de + σ1)(di + σ2)I

≤ σ1µSI

k
− (de + σ1)(di + σ2)I

= (de + σ1)(di + σ2)
( σ1µS

k(de + σ1)(di + σ2)
− 1
)
I

≤ (de + σ1)(di + σ2)
( σ1µρ

kds(de + σ1)(di + σ2)
− 1
)
I , since S ≤ ρ

ds
= (de + σ1)(di + σ2)(R− 1)I, ∀(S,E, I,R) ∈ Ω2.

If R ≤ 1, then Ḟ1 ≤ 0 ∀ S,E, I,R > 0. Let W1 = {(S,E, I, R) : Ḟ1 = 0}. It can be easily shown
that W1 = {Ē} . Using LaSalle’s invariance principle [14] (see [15, 16, 17, 9, 10, 11, 18, 19] for more
applications), one can easily deduce that Ē is GAS when R ≤ 1. Then the solution of system (2.1)
converges to Ē since t → +∞.

Theorem 4. If R > 1, then the endemic equilibrium E∗ is globally asymptotically stable.

Proof. Again we use a Lyapunov function given by

F2 = (S − S∗ ln(
S

S∗ )) + (E − E∗ ln(
E

E∗ )) +
de + σ1

σ1
(I − I∗ ln(

I

I∗
))

The function F2 admits its minimum value Fmin = S∗+E∗+
de + σ1

σ1
I∗ when S = S∗, E = E∗, I =

I∗.

The time-derivative of F2, along solutions of system (2.1) is given by:

Ḟ2 = (1− S∗

S
)Ṡ + (1− E∗

E
)Ė +

de + σ1

σ1
(1− I∗

I
)İ

= (1− S∗

S
)(ρ− dsS − µSI

k + I
) + (1− E∗

E
)(

µSI

k + I
− (de + σ1)E)

+
de + σ1

σ1
(1− I∗

I
)(σ1E − (di + σ2)I).
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Applying the steady state conditions for E∗

ρ = dsS
∗ +

µS∗I∗

k + I∗
,
µS∗I∗

k + I∗
= (de + σ1)E

∗, σ1E
∗ = (di + σ2)I

∗,

we get

Ḟ2 = (1− S∗

S
)
(
dsS

∗ − dsS +
µS∗I∗

k + I∗
− µSI

k + I

)
+

µSI

k + I
− (de + σ1)E − µSI

k + I

E∗

E

+(de + σ1)E
∗ +

de + σ1

σ1

(
σ1E − (di + σ2)I − σ1E

I∗

I
+ (di + σ2)I

∗
)

= (1− S∗

S
)(dsS

∗ − dsS) +
µS∗I∗

k + I∗
− µS∗I∗

k + I∗
S∗

S
+

µS∗I

k + I
− µSI

k + I

E∗

E

+(de + σ1)E
∗ − de + σ1

σ1
(di + σ2)I − (de + σ1)E

I∗

I
+

de + σ1

σ1
(di + σ2)I

∗

= ds(1−
S∗

S
)(S∗ − S) +

µS∗I∗

k + I∗
− µS∗I∗

k + I∗
S∗

S
+

µS∗I

k + I
− µSI

k + I

E∗

E
+

µS∗I∗

k + I∗

−µS∗I∗

k + I∗
I

I∗
− µS∗I∗

k + I∗
E

E∗
I∗

I
+

µS∗I∗

k + I∗

= ds(1−
S∗

S
)(S∗ − S) +

µS∗I∗

k + I∗

(
4− S∗

S
− E

E∗
I∗

I
− k + I

k + I∗
− S

S∗
E∗

E

k + I∗

k + I

I

I∗

)
+
µS∗I∗

k + I∗

( I

I∗
− I(k + I∗)

I∗(k + I)

)(I∗(k + I)

I(k + I∗)
− 1
)
.

By using the rule

x1 + x2 + x3 + x4 ≥ 4 4
√
x1 · x2 · x3 · x4, x1, x2, x3, x4 ≥ 0 (4.1)

then
(
4− S∗

S
− E

E∗
I∗

I
− k + I

k + I∗
− S

S∗
E∗

E

k + I∗

k + I

I

I∗

)
≤ 0.

Now, using the fact that
( I

I∗
− I(k + I∗)

I∗(k + I)

)(I∗(k + I)

I(k + I∗)
− 1
)
≤ 0. Therefore Ḟ2 ≤ 0 . Thank’s to

Lyapunov theorem, E∗ is stable.

It remains to show that E∗ is asymptotically stable using the Lasalle invariance principle.

Then Ḟ2(S,E, I, R) = 0 if and only if S = S∗ and
E

E∗ =
I

I∗
. Let a =

E

E∗ =
I

I∗
, then E = aE∗ and

I = aI∗.

The endemic equilibrium satisfies
ρ = dsS

∗ +
µS∗I∗

k + I∗
,

µS∗I∗

k + I∗
= (de + σ1)E

∗,

σ1E
∗ = (di + σ2)I

∗,
σ2I

∗ = drR
∗,

(4.2)

Then a = 1. Therefore I = I∗ and E = E∗.

Finally Ḟ2(S,E, I,R) = 0 if and only if S = S∗, E = E∗, I = I∗ and R = R∗.

Therefore, the largest invariant set contained in the set {(S,E, I, R) |Ḟ2 = 0} is reduced to the
singleton set {E∗}. Applying LaSalle’s invariance principle [14] (see [18, 19, 20, 21, 22, 23] for other
applications), one can deduce that E∗ is GAS when R > 1.
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5 Numerical Simulations

The aim of this work is to study and analyze the dynamic behavior of an SEIR epidemic model
with a nonlinear incidence rate. Consider system (2.1) with the parameters given in Table 1.

Table 2. Values of the parameters for numerical investigations

Parameter ρ ds de di dr σ1 σ2

Value 1000 6 9 4 8 2 10

We give some numerical simulations confirming the global stability of the equilibria of system (2.1).
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Fig. 1. µ̄ = 2 and k = 8 then R = 0.54 < 1. (S0, E0, I0, R0) = (1, 2, 70, 100) (left) and
(S0, E0, I0, R0) = (1, 140, 70, 100) (right)
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Fig. 2. µ̄ = 8 and k = 2 then R = 8.66 > 1. (S0, E0, I0, R0) = (1, 2, 70, 100) (left) and
(S0, E0, I0, R0) = (1, 140, 70, 100) (right)
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In the two first cases where R < 1, , it can be seen from these figures that all solutions approach

the disease-free equilibrium point Ē = (
ρ

ds
, 0, 0, 0) under the mentioned initial conditions (Fig. 1)

which confirms the global stability of Ē once R ≤ 1.

In the last two cases where R > 1, the figures (Fig. 2) confirm that the endemic equilibrium
E∗ is globally asymptotically stable, and all solutions converge to E∗ under the mentioned initial
conditions.

6 Conclusion

In this paper, we have considered a deterministic differential equation standing for a SEIR epidemic
model. Firstly, we have proved the global positivity of the solution (see Proposition 1) then the
basic reproduction number R was calculated. The model admits at most two equilibria: the disease-
free equilibrium Ē and the endemic equilibrium E∗ (see Proposition 2). The local stability of the
two equilibria was carried out (see Theorem 1 and Theorem 2) and the global stability of the two
equilibria was studied (see Theorem 3 and Theorem 4). Ē is locally and globally asymptotically
stable when the reproduction number R ≤ 1. If R > 1, E∗ exists and is unique and it is locally and
globally asymptotically stable.
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