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ABSTRACT 
 

Aims: Moringa oleifera is a species with multivariate uses. Despite its socio-economic importance 
in the northern part of Cameroon, it remains undervalued. Understanding its contribution to the fight 
against climate change requires precise quantification of its biomass. However, there is a lack of 
site-specific allometric equations for estimating this biomass. The development of site-specific 
allometric equations of M.oleifera is therefore imperative to facilitate this effort. 
Study Design: To achieve this objective, a sample of fourteen trees of M.oleifera was taken in 
from the two areas and divided into diameter classes between 5 and 13 cm. 
Place and Duration of Study: Sample: Agroecological zones of High guinean savannahs and 
Sudano-sahelian zone of Cameroon between April and July 2021. 
Methodology: The diameter at breast height of these trees and their height were measured. After 
tree cutting, biomass of compartments of leaves, branches, trunks and roots were determined after 
drying and weighing. Various allometric equations between biomasses and two parameters of the 
tree (the diameter and the height) were tested. The adjusted coefficient of determination (R

2
adj), 

the residual standard error (RSE) and the Akaike Information Criteria were used for choosing the 
best models.   
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Results: The different analyses showed that diameter at breast height (DBH) is the variable that 
offers the best correlation for global above-ground (AGB) and below-ground (BGB) biomass in 
contrast to the other compartments. Thus, the best models for predicting total above-ground 
biomass of M. oleifera are -3.653-0.250lnD+5.119lnH (Sudano-Sahelian), -3.916 + 2.982lnD (High 
guinean Savannahs), -2.340 + 2.117lnD (Global) and finally for roots -6.426 + 2.182lnD. 
Conclusion: These mathematical models could help in estimating the biomass of Moringa oleifera 
in agroforestry systems under the ecological conditions of Cameroon. 
 

 
Keywords: Allometric equations; biomass; M. oleifera; agroforestry systems; Northern Cameroon. 
 

1. INTRODUCTION  
 
A major challenge in agroforestry is the choice of 
high-performance plant species. This issue is 
attracting more attention lately due to changing 
climatic conditions. Moringa oleifera represents a 
promising species to meet such challenges [1]. 
Indeed, M. oleifera has its origins in the regions 
of Agra and Oudh in northeastern India and 
those of Chenab in the south of the Himalayan 
mountain range [2,3]. This plant is now cultivated 
and acclimatized in many tropical and subtropical 
regions around the world [4,5]. M. oleifera is a 
species of socio-economic interest [6] which 
adapts well to local conditions [7]. The use of all 
its parts makes this plant an asset in contributing 
to the fight and prevention of malnutrition [8-11]. 
Several factors contribute to this widespread 
interest: its cultivation in a variable range of 
climatic and geographical conditions, its high 
production yields, nutritional relevance for 
humans and animals [12]. This shrub, belonging 
to the Moringaceae family, is widely exploited for 
its preventive and curative properties for several 
diseases [13]. The exploitation of the products 
from this plant makes it possible to improve the 
diet as well as the health of the population and to 
generate income for the producers [14]. 
However, knowledge on the biomass produced 
by this species is very limited in the ecological 
conditions of the northern zone of Cameroon. 
However, biomass provides important 
information on the ecological and economic 
performance of agrosystems [15,16]. Moreover, 
biomass provides information on the potential of 
atmospheric carbon sequestration by a species. 
This issue is particularly relevant to the global 
concern of climate change mitigation due to 
greenhouse gas emissions [17].  Indeed, climate 
change has received increasing attention, 
particularly with regard to the sustainable 
management of forest ecosystems [18]. These 
ecosystems, including sustainably managed 
agroforestry systems, can contribute to climate 
change mitigation [19-22]. It is with this regard 
that economic incentives such as REDD+ 

(Reduction of emissions from deforestation and 
forest degradation + conservation and 
sustainable management of forests) have been 
designed to offset carbon inputs by reducing 
emissions from deforestation and forest 
degradation [23]. The success of REDD+ thus 
relies on robust, reliable and efficient procedures 
for assessing carbon stocks [24]. Data on 
species of socio-economic importance such as 
M.oleifera must therefore be documented [25] to 
build a database to predict biomass and, in turn, 
carbon stocks. Specific biomass estimation 
models must be formulated. In the tropical 
forests of Africa, biomass estimates are 
hampered by the lack of accurate allometric 
equations [26,27]. Therefore, many biomass 
estimates in Africa have relied on pantropical 
models [28, 29]. However, the applicability of 
these general equations in tropical African 
ecosystems is questionable [30,26,27]. Species- 
and site-specific allometric equations are 
therefore needed for reliable monitoring and 
verification of carbon stocks [18]. The objective 
of this study was to develop allometric equations 
that accurately predict the biomass of M. oleifera 
in agrosystems, thus addressing Goal 13 of the 
Sustainable Development Goals (to take urgent 
action to address climate change and its 
impacts) as well as the opportunities offered by 
the Clean Development Mechanism (CDM) and 
REDD+.   
 

2. MATERIALS AND METHODS 
 

2.1 Study Sites 
 
This study was carried out in the northern zone 
more precisely in the high Guinean savannahs 
and the Sudano-Sahelian zone of Cameroon. 
These areas are located between 6° and 8° 
North latitude, 10° and 16° East longitude for the 
High guinean savannahs (HGS) and between 7° 
and 10° North latitude and between 12° and 16° 
East longitude for the Sudano-Sahelian zone 
(SS) (Fig.1) [31]. The climate of the HGS has two 
distinct seasons (the rainy season followed by 



 
 
 
 

Zang et al.; JAERI, 23(2): 27-45, 2022; Article no.JAERI.84817 
 
 

 
29 

 

the dry season). The dry season extends from 
November to March [32]. The rainy season from 
April to October. During this period, the rhythm of 
the rains is sustained with more than 200 mm of 
monthly rain for five months and 1600 to 1800 
mm/year. The SS zone is characterized by 
annual rainfall reaching 1290 mm/year. It is 
characterized by 6 to 7 months of rain (April to 
October) and 5 to 6 months of drought 
(November to March) [33]. Sudano-Sahelian type 
are ferruginous with a predominantly sandy 
texture, clayey horizon at depth [34,35]. 
Concerning the vegetation, the HGS are covered 

at more than 90% by a shrubby savannah or 
open tree whose dominant species are Daniellia 
oliveri and Lophira lanceolata [36]. As for the SS 
zone, it abounds in shrubby to wooded or tree 
savannahs and even open forests in the Bénoué 
basin. The main plant formations are: gregarious 
formations with Isoberlinia doka and Isoberlinia 
tomentosa, formations with Boswellia odorata, 
Sclerocarya birrea, Prosopis africana [37]. 
Livestock raising predominates peasant activities 
in the HGS [35,38]. The SS zone is marked by a 
dominant production system based on cotton and 
food crops [39]. 

 

 
 

Fig. 1. Location of the study site 
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2.2 Sampling and Data Collection 
 

2.2.1 Selections of individuals 
 

Fourteen M.oleifera trees (seven per zone) were 
harvested for developing allometric models. 
Selection of each individual tree was based on 
diameter at breast height. Destructive method 
was adopted to determine the biomass of each 
individual tree in the two agro-ecological zones. 
The individuals were grouped into five DBH 
classes:  1-5 cm, 5-9 cm, 9-13 cm and 13-17 cm. 
For each sample tree the DBH and total height 
(H) of the stand trees were first recorded. Trees 
were felled close to ground level. The trees were 
selected to ensure a representative distribution of 
diameter classes within the sampling plots. 
Individuals were selected on the basis of their 
availability and the absence of human 
exploitation (traces of pruning or limping) or 
disease. 
 

2.2.2 Data collection for the establishment of 
allometric models 

 

The felling down of trees was preceded by the 
measurement of their DBH. Each tree was then 
separated into trunk, branches and leaves as 
well as small twigs, following the method 
described by Picard et al. [40]. The different trunk 
compartments, branches and leaves were 
weighed using a 50 kg capacity scale after which 
the total wet weight of each compartment of the 
tree was determined in the field. Trunks, roots 
and large branches were cut into discs. A disc 
sample from the trunk, a branch and a leaf 
sample were taken and weighted. At the level of 
the root, disc samples were taken at random 
after clearing the roots of mud. Samples obtained 
were immediately stored in plastic bags and 
transported to the National school of agro-
industrial sciences of the University of 
Ngaoundere precisely in the Physicochemical 
laboratory where their dry masses were 
determined. In the laboratory, samples of leaves, 
trunks, branches and roots were oven-dried at a 
constant temperature of 75°C to constant weight 
after 72 hours. The water content (WC) in the 
different compartments (leaves, branches, trunk, 
root) was determined after drying the samples 
according to the formula:   
 

WC (%) = ((WM-DM)/DM)*100                   (1) 
 
Where: WC is the water content of the samples 
in percentage, WM and DM are respectively the 
wet mass (Kg) and the dry mass (Kg) of the 
sample.  

From the water content of the samples, the total 
dry mass (TDM) of each compartment was 
calculated according to the French standard NF 
M 03-002 using the following formula:  
 

TDM = 100 * TWM / (100 + WC)                (2) 
 
Where: TDM is the total dry mass, TWM is the 
total wet mass (Kg). The total dry masses are 
called biomass and expressed in Kilograms (Kg) 
[41]. The total dry mass of each tree was 
estimated by adding the dry mass of the different 
compartments of the trees. 
 

2.3 Data Analysis 
 
Allometric equation were established using the 
physical parameters of the tree, namely diameter 
at breast height (DBH), height (H), and tree 
biomass (B) [42]. Prior to this step, since 
allometric relationships are influenced by growth 
stages [43], the relationship between tree height 
(H) and diameter (D) (H–D) was initially analyzed 
by plotting H (m) versus D (cm) to identify the 
diameter classes where the predictions were 
better. The models frequently found in the 
literature to predict biomass are of two types: the 
power model and the polynomial model [44]. In 
this study, the power model was used because it 
has long been noted that a growing plant  
maintains the proportion of weight between 
different parts [45,46] and because the 
polynomial model frequently exhibits abnormal 
behavior outside their range of validity. The 
mathematical model commonly used to predict 
the phytomass was adopted:  
 

B = aD
b                                                                                    

(3) 
 
Where a, b and c are the scaling or adjustment 
coefficients, D the DBH and B the aboveground 
biomass of a tree [47-51]. In this study, three 
allometric models [52] were evaluated to predict 
the aboveground biomass of M.oleifera: 

 
B = aDb                                                      (4) 

 
B = a (D

2
H)

b
          (5)   

 
B = aD

b
H

c
                                                   (6) 

 
In order to eliminate the influence of the 
heteroscedasticity of the data, the transformation 
in logarithmic form is regularly used to change 
the nonlinear model into a linear model [51]. 
Therefore, (4), (5) and (6) have been converted 
to (7), (8) and (9) respectively as follows: 
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Ln(B) = a + b*ln (D)                                    (7) 
 

Ln(B) = a + b*ln (D
2
H)                                (8) 

 
Ln(B) = a + b*ln(D) + c*ln (H)                     (9) 

 
For each of these models, the following 
indicators that permits good quality when a 
model is adjustment, were used to select the 
best model: 
 

 The adjusted R
2
: This coefficient, between 

0 and 1, gives an idea of the proportion of 
the explained variability of the aerial 
biomass by the model. The closer it is to 1, 
the better the model is [52]  

 

   
     

   
                                                 (10) 

 
Where SCT: Sum of Total Squares and SCR: 
Sum of Residual Squares. 
 

 The residual standard error (RSE): square 
root of the residual variance around the 
regression function. The lower a model has 
a CSR, the better it is: 

      
                

   
                     (11) 

Where RSE: Residual standard error; AGB 
obs: Measured above ground biomass; 
AGB pred: Predicted above-ground 
biomass, n=data points in population. 

 Akaike's Information Criterion (AIC): The 
quality measurement of adjustment of a 
regression model proposed by [53]. The 
best model minimizes the value of the AIC 
obtained by the following formula: 

 
AIC= -2 ln (L) + 2p                                    (12) 

 
with p the number of model parameters and L the 
maximized likelihood. 
 
The logarithmic transformation of the data 
generally leads to a bias in the estimation of the 
phytomass [28,54]. A correction is necessary and 
consists in multiplying the estimated phytomass 
by a correction factor (CF) which is calculated as 
follows:  
 
CF= exp {RSE²/2} (13) 
 
where CF is a number that is always greater than 
1. For as long as these criteria are low 
(particularly RSE and AIC), and the higher the 
adjusted R

2
, the better the model will be [28]. 

All these statistical analyses were performed with 
Microsoft office Excel 2016, and the allometric 
equations were developed in R Studio software 
who benefits from a strong community of users 
who can freely contribute to the development of 
the software by adding additional functionalities.  

 
In R, producing an analysis generates a large 
number of results of all sorts with a display 
reduced to a minimum and the user can ask to 
see additional or more detailed results. However, 
as R is more like a programming language than a 
software itself, the learning curve can be a bit 
“steep”, especially for those who have never 
programmed before. [55]. 

 
3. RESULTS  
 
3.1 Relationship between Diameter and 

Height 
 
The correlation established between the 
diameter and the height of the individuals in the 
two zones is significant (Fig. 2) with a coefficient 
of determination of 0.93 and 0.90 respectively for 
the High guinean savannahs (HGS) and the 
Sudano-Sahelian zone (SS). In the field of 
forestry, height-diameter relationships make it 
possible to best estimate the height of a tree 
knowing its diameter. Thus the allometric 
relationship of all the individuals measured fits 
better with the following equations: 

 
a) HGS: H= 0.316D + 2.250, R

2
 = 0.90, n= 7 

and P < 0.001; 
b) SS: H= 0.155D + 2.031, R

2
=0.93, n=7 and 

P < 0.001. 
 
The diameter-height relationship is a good 
indicator of the ecological conditions for the 
growth of a species [56]. Studies conducted by 
Fayolle et al. [57] and Imani et al. [58] have 
suggested that the appropriateness of a model 
function for predicting tree height in forest sites 
may vary due to differences in height–diameter 
relationship of trees in different forest sites. The 
equations obtained present the determination 
coefficients in the order: 93.93% and 90.75%. 
They make it possible to predict the height of a 
tree from the diameter. This distribution model 
shows that it is in the middle diameter classes 5-
9 cm that it is appropriate to predict the total 
height of the individuals studied. The biases 
observed are lower for the lower diameter class 
(class I) than those of the upper diameter class 
(class III) on the distribution of the point cloud. 
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Fig. 2. Relationship between diameter and height of M.oleifera 
 

3.2 Development of Allometric Equations 
Specific to Moringa oleifera 

 
The various data from the allometric equations 
obtained by testing the three mathematical 
models for each zone; High guinean savannah 
(HGS) and the Sudano-Sahelian (SS) zones, as 
well as a model grouping the data from the two 
zones (Global), are presented in Tables 1, 2, 3, 
4, 5 and 6 according to the different 
compartments. The variables a, b and c are the 
model adjustment coefficients, N the number of 
samples, R²aj the adjusted coefficient of 
determination, CF the correction factor, RSE the 
residual standard error and AIC the Akaike 
information criterion. 
 

3.2.1 Leaves  
 

The constants regression of all the equations 
retained except those of the SS zone are 
statistically significant (P < .05). They range from 
P = .31 to P = .49 (SS), P = .004 to P = .01 
(HGS) and P = .01 to P =.03 (Global). The 
presented prediction models explain the variation 
in the biomass of about -6.5 to 15.5%, 79.8 to 
82.5% and 32.2 to 36.5% for the SS zone leaves, 
HGSs and the northern zone (Global) 
respectively. Linear models with DBH as the sole 
predictor predicted leaf biomass of M. oleifera as 
the least. The incorporation of height as a 
second variable in addition to DBH was 
necessary for a better estimation of leaf biomass 
(Table 1). The addition of height in these models 
improved the quality of the fit in the form 
ln(B)=a+bln(D)+cln(H) (SS) and 
ln(B)=a+bln(D

2
H) (HGS and Global). This 

improvement is observed with the leaf models of 
the two zones as well as that grouping the two 

zones (AIC = 30.955; RSE = 1.65; Adj.R² = 0.155 
(SS); AIC = 20.102; RSE = 0.784; Adj.R² = 0.825 
(HGS) and AIC = 53.116; RSE = 1.406; Adj.R² = 
0.365 (Global)). We can therefore adjust a simple 
linear regression for predicting ln(B) relative to 
ln(D+H) and ln(D

2
H) (Fig. 3). 

 
3.2.2 Branches 
 
The constants regression of all the equations 
retained are statistically significant (P < .05) 
except those of SS zone. They range from P = 
.06 to P = .16 (SS), P = .003 to P = .02 (HGS), P 
< .001 (Global). The presented prediction models 
explain about 39-43.9%, 77.6-80.8% and 59.1-
62.5% of the variation in branch biomass as 
regard the SS, HSG and Northern (Global) zones 
respectively. Linear models with DBH as the sole 
predictor were used to predict the biomass of the 
branches of the Global (AIC = 48.941; RSE = 
1.211; Adj.R² = 0.623). For the SS zone and the 
HGSs, the incorporation of the height as a 
second variable in addition to the DBH in the 
form ln(B)=a+bln(D

2
H) was necessary for a 

better estimation of the biomass of their 
branches (Table 2) and (Fig. 4).   
 

3.2.3 Trunks 
 

For the trunk biomass estimation models, the 
constants regression of all the equations retained 
were statistically significant (P < .05). They 
ranged from P = .004 to P = .01 (SS), P < .001 to 
P = .001 (HGS), P < .001 (Global). The 
presented prediction models explain about 77.6-
84%, 90.9-95.2% and 74.2-78.9% of the variation 
in the biomass for SS zone tree trunks, HGSs 
and northern zone (Global) respectively. For all 
these areas, the incorporation of the height as a 
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second variable in addition to the DBH giving the 
form ln(B)=a+bln(D)+cln(H), was necessary for a 

better estimation of the biomass of their trunks 
(Table 3) and (Fig. 5). 

 

 
 

Fig. 3. Regression models between biomass and physical parameters of trees (D and H) for the 
leaves 

 

 
 

Fig. 4.  Regression models between biomass and physical parameters of trees (D and H) for 
the branches 
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Table 1. Allometric models of leaves 
 

Zones Allometrics models a b c R2adjusted RSE N CF AIC P  

SS  ln(B)=a+bln(D) -2.799 (2.17) 0.815 (1.11)  0.083 1.868 7 5.724 32.259 0.49 
ln(B)=a+bln(D2H) -3.151 (2.44) 0.384 (0.48)   -0.065 1.852 7 5.556 32.141 0.46 
ln(B)=a+bln(D)+cln(H) -13.061 (6.88) -3.801 (3.13) 16.417 (10.56) 0.155 1.65 7 3.901 30.955 0.31 

HGS ln(B)=a+bln(D) -5.564 (0.88) 2.544 (0.51)   0.798 0.841 7 1.424 21.087 0.004 
ln(B)=a+bln(D2H) -6.343 (0.95) 1.059 (0.19)  0.825 0.784 7 1.359 20.102 0.002 
ln(B)=a+bln(D)+cln(H) -7.610 (2.1) 1.289 (1.27)  2.243 (2.74) 0.804 0.828 7 1.408 21.319 0.01 

Global ln(B)=a+bln(D) -4.194 (1.26) 1.631 (0.60)   0.323 1.452 14 2.869 54.020 0.01 
ln(B)=a+bln(D2H) -4.853 (1.25) 0.736 (0.25)  0.365 1.406 14 2.686 53.116 0.01 
ln(B)=a+bln(D)+cln(H) -6.069 (1.83) 0.841 (0.85) 2.562 (2.00) 0.356 1.416 14 2.725 54.084 0.03 

Biomass (B), diameter at breast height (D), height (H), Coefficient of regression model (a, b and c), specimen number (N), coefficient of determination adjusted (R²adj), correction factor (CF), residual standard error 
(RSE) and Akaike information criteria (AIC). 

 
Table 2. Allometric branches models 

 

Zones Allometrics models a b c R2adjusted RSE N CF AIC P 

SS ln(B)=a+bln(D) -1.685 (1.08) 1.282 (0.55)  0.420 0.93 7 1.541 22.498 0.06 
ln(B)=a+bln(D2H) -2.075 (1.20) 0.570 (0.23)  0.439 0.915 7 1.519 22.270 0.06 
ln(B)=a+bln(D)+cln(H) -4.996 (3.98) -0.206 (1.81) 5.296 (6.11) 0.390 0.954 7 1.576 23.294 0.16 

HGS ln(B)=a+bln(D) -5.906 (1.16) 3.438 (0.66)  0.808 1.104 7 1.839 24.890 0.003 
ln(B)=a+bln(D2H) -6.909 (1.30) 1.420 (0.27)  0.819 1.071 7 1.774 24.469 0.003 
ln(B)=a+bln(D)+cln(H) -7.356 (3.02) 2.550 (1.83) 2.084 (3.95) 0.776 1.193 7 2.037 26.420 0.02 

Global ln(B)=a+bln(D) -3.996 (0.93) 2.406 (0.50)  0.623 1.211 14 2.081 48.941 0.000 
ln(B)=a+bln(D2H) -4.715 (1.08) 1.033 (0.21)  0.622 1.213 14 2.086 48.985 0.000 
ln(B)=a+bln(D)+cln(H) -4.337 (1.63) 2.263 (0.76) 0.465 (1.78) 0.591 1.261 14 2/214 50.855 0.002 

Biomass (B), diameter at breast height (D), height (H), Coefficient of regression model (a, b and c), specimen number (N), coefficient of determination adjusted (R²adj), correction factor (CF), residual standard error 
(RSE) and Akaike information criteria (AIC) 
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Table 3. Allometric trunk models 
 

Zones Allometrics models a b c R2adjusted RSE N CF AIC P 

SS ln(B)=a+bln(D) -1.211(0.52) 1.244(0.26)  0.776 0.447 7 1.105 12.246 0.005 
ln(B)=a+bln(D2H) -1.582(0.55) 0.55 (0.11)  0.799 0.423 7 1.093 11.471 0.004 
ln(B)=a+bln(D)+cln(H) -3.832(1.57) 0.065(0.71) 4.192(2.42) 0.840 0.378 7 1.074 10.333 0.011 

HGS ln(B)=a+bln(D) -3.942 (0.44) 2.471 (0.25)  0.94 0.417 7 1.090 11.289 0.000 
ln(B)=a+bln(D2H) -4.574 (0.62) 1.002 (0.12)  0.909 0.511 7 1.139 14.135 0.000 
ln(B)=a+bln(D)+cln(H) -2.641 (0.94) 3.270 (0.57) -1.871 (1.23) 0.952 0.372 7 1.071 10.102 0.001 

Global ln(B)=a+bln(D) -2.769 (0.50) 1.929 (0.27)  0.788 0.656 14 1.240 31.782 0.000 
ln(B)=a+bln(D2H) -3.244 (0.64) 0.807 (0.13)  0.742 0.723 14 1.298 34.526 0.000 
ln(B)=a+bln(D)+cln(H) -2.068 (0.84) 2.224 (0.39) -0.958 (0.92) 0.789 0.654 14 1.238 31.486 0.000 

Biomass (B), diameter at breast height (D), height (H), Coefficient of regression model (a, b and c), specimen number (N), coefficient of determination adjusted (R²adj), correction factor (CF), residual standard error 
(RSE) and Akaike information criteria (AIC) 

 
Table 4. Allometric models of above-ground biomass 

 

Zones Allometrics models a b c R2adjusted RSE N CF AIC P 

SS ln(B)=a+bln(D) -0.453 (0.73) 1.189 (0.37)  0.603 0.627 7 1.217 16.979 0.02 
ln(B)=a+bln(D2H) -0.816 (0.80) 0.529 (0.15)  0.628 0.607 7 1.202 16.522 0.02 
ln(B)=a+bln(D)+cln(H) -3.653 (2.40) -0.250 (1.09) 5.119(3.69) 0.665 0.576 7 1.180 16.230 0.04 

HGS ln(B)=a+bln(D) -3.916 (0.30) 2.982 (0.17)  0.979 0.291 7 1.043 6.271 0.000 
ln(B)=a+bln(D2H) -4.750 (0.37) 1.224 (0.07)  0.977 0.304 7 1.047 6.876 0.000 
ln(B)=a+bln(D)+cln(H) -4.223 (0.80) 2.794 (0.44) 0.441(1.05) 0.975 0.319 7 1.052 7.973 0.000 

Global ln(B)=a+bln(D) -2.340 (0.60) 2.117(0.32)  0.760 0.777 14 1.352 36.512 0.000 
ln(B)=a+bln(D2H) -2.963 (0.70) 0.907 (0.14)  0.756 0.785 14 1.360 36.796 0.000 
ln(B)=a+bln(D)+cln(H) -2.554 (1.04) 2.027 (0.48) 2.027(1.14) 0.740 0.809 14 1.387 38.429 0.000 

Biomass (B), diameter at breast height (D), height (H), Coefficient of regression model (a, b and c), specimen number (N), coefficient of determination adjusted (R²adj), correction factor (CF), residual standard error 
(RSE) and Akaike information criteria (AIC). 
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Fig. 5. Regression models between biomass and physical parameters of trees (D and H) for the 
trunks 

 
3.2.4 Above-ground biomass 
 

The constants regression of the equations 
retained are statistically significant (P < .05). 
They range from P = .02 to P = .04 (SS), P < 
.001 (HGS and Global). The presented prediction 
models explain about 60.3-66.5%, 97.5-97.9% 
and 74-76% of the variation in the total biomass 
of the SS zone, the HGSs and the northern zone 
(Global) respectively. DBH as a single variable 
was found to be the best predictor of total 
biomass in HGSs and for the overall equation 
(Table 4) and (Fig. 6). In this model, the values of 
RSE and AIC are the lowest (0.291 and 6.271; 
0.77 and 36.512) as well as the strongest 
adjusted R

2
 (0.979 and 0.760) compared to the 

two other models. As for the SS zone, the linear 
regression of this model expresses higher values 
of RSE and AIC (0.627 and 16.979) as well as a 
lower adjusted R

2
 (0.603). This model is 

therefore the least suitable for predicting the total 
biomass of M.oleifera in the SS zone.  
 

3.2.5 Belowground biomass 
 

For the belowground biomass estimation models, 
the regression constants of all the equations 

retained were statistically significant (P < .05) 
and ranging from P < .001 to P = .003. The 
prediction models presented explain 
approximately 85.7 to 88% of the variation in 
belowground biomass. Belowground biomass 
using DBH as the sole variable performed better 
than that integrating height (adjusted R

2
=0.880; 

RSE= 0.719; AIC=21.140) (Table 5) and (Fig. 7). 
 
Taking into account the criteria for assessing the 
precision and accuracy of the models developed, 
the best models of allometric equations 
according to compartments and zones, retained 
are summarized in Table 6. 
 

4. DISCUSSION 
 
The significant and positive diameter-height 
relationship corroborates those reported by 
Mamadou [59] on 574 individuals of 8 species 
from the Ngaoundere savannhas (R

2
=0.5063) 

and by Halilou [60] on 96 individuals belonging to 
16 species from the Ngaoundere savannas. 
(R

2
=0.4956). The diameter-height relationship is 

also a good indicator of the ecological growth 
conditions of a species [56]. The choice of the 
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mathematical model to adjust the parameters 
must be carefully considered in the estimation of 
the biomass of woody plants [61]. Leaf biomass, 
branch biomass, trunk biomass, total 
aboveground biomass (AGB) and belowground 
biomass (BGB) of individuals were calculated 
using the power model. This mathematical model 
has been widely used in the literature for 
predicting the standing biomass of woody 
species in Europe [48] and in Africa 
[45,61,62,63]. The allometric models developed 
vary from one compartment to another and even 
from one area to another. This variation would be 
linked to the variation in biomass observed 
between the different parts of the species 
Ganame et al. [61]. The sample size was small at 
14 individuals. Indeed, the sample size in the 

development of allometric models is variable in 
the literature and takes into account the 
availability of resources (individuals) and the time 
allocated to the study Tchindebe et al. [64]. 
Some predictive allometric equations of biomass 
have been constructed from different numbers of 
individuals depending on the ecosystem: 26 
trees in the forest zone of Benin by Guendehou 
et al. [65], 20 trees in the wooded savannah of 
the Sudanian zone of Senegal by Mbow et al. 
2014 [66], 38 trees in the Sahelian zone in 
Senegal by Thiam et al. [67], 20 trees in the 
Sudano-Sahelian savannas of Cameroon by 
Tchindébé et al. [52]. However, this number of 
individuals is equal to that used by Manzo et al. 
[68] in Faidherbia albida agrosystems in Aguié, 
Niger. 

 

 
 

Fig. 6. Regression models between biomass and physical parameters of trees (D and H) for the 
Above-ground biomass 
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Table 5. Allometric models of below-ground biomass 
 

Allometric models a b c R2ajusted RSE N CF AIC P 

ln(B)=a+bln(D) -6.426 (0.47) 2.182 (0.30)  0.880 0.719 6 1.294 21.140 0.000 
ln(B)=a+bln(D2H) -7.227(0.58) 0.952 (0.13)  0.877 0.728 6 1.303 21.327 0.000 
ln(B)=a+bln(D)+cln(H) -6.709 (1.42) 2.090 (0.54) 0.329(1.54) 0.857 0.784 6 1.359 23.068 0.003 

 
Table 6. Summary of the best allometric models 

 

Compartments Zones Allometric models a b c R
2
ajusted RSE N CF AIC P 

Leaves SS ln(B)=a+bln(D)+cln(H) -13.061(6.88) -3.801 (3.13) 16.417 (10.56) 0.155 1.65 7 3.901 30.955 0.31 
 HGS ln(B)=a+bln(D

2
H) -6.343(0.95) 1.059 (0.19)  0.825 0.784 7 1.359 20.102 0.002 

 Global ln(B)=a+bln(D
2
H) -4.853(1.25) 0.736 (0.25)  0.365 1.406 14 2.686 53.116 0.013 

Branches SS ln(B)=a+bln(D
2
H) -2.075(1.20) 0.570 (0.23)  0.439 0.915 7 1.519 22.270 0.06 

 HGS ln(B)=a+bln(D
2
H) -6.909(1.30) 1.420 (0.27)  0.819 1.071 7 1.774 24.469 0.003 

 Global ln(B)=a+bln(D) -3.996(0.93) 2.406 (0.50)  0.623 1.211 14 2.081 48.941 0.000 

Trunks SS ln(B)=a+bln(D)+cln(H) -3.832(1.57) 0.065 (0.71) 4.192 (2.42) 0.840 0.378 7 1.074 10.333 0.01 
 HGS ln(B)=a+bln(D)+cln(H) -2.641(0.94) 3.270 (0.57) 1.871 (1.23) 0.952 0.372 7 1.071 10.102 0.001 
 Global ln(B)=a+bln(D)+cln(H) -2.068(0.84) 2.224 (0.39) -0.958 (0.92) 0.789 0.654 14 1.238 31.486 0.000 

Aboveground biomass SS ln(B)=a+bln(D
2
H) -3.633(2.40) 0.529 (0.15)  0.628 0.607 7 1.202 16.522 0.02 

 HGS ln(B)=a+bln(D) -3.916(0.30) 2.982 (0.17)   0.979 0.291 7 1.043 6.271 0.000 
 Global ln(B)=a+bln(D) -2.340(0.60) 2.117 (0.32)  0.760  0.777       14 1.352 36.512 0.000 

Belowground biomass Global ln(B)=a+bln(D) -6.426(0.47) 2.182 (0.30)  0.880 0.719  1.294 21.140 0.000 
Biomass (B), diameter at breast height (D), height (H), Coefficient of regression model (a, b and c), specimen number (N), coefficient of determination adjusted (R²adj), correction factor (CF), residual standard error 

(RSE) and Akaike information criteria (AIC) 
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Fig. 7. Regression models between biomass and physical parameters of trees (D and H) for the 
below-ground biomass 

 
Allometric models developed with diameter (D) 
as the only explanatory variable were the most 
effective in predicting branch biomass, 
aboveground biomass of individuals from High 
guinea savannas, global as well as belowground 
biomass. Numerous studies have shown that the 
DBH is the most commonly used explanatory 
variable for predicting the biomass of different 
compartments of woody species [24,45,69]. 
Indeed, DBH can be easily measured in the field 
with more precision than other dendrometric 
parameters. In addition, this variable is still 
available in inventory data Ganame et al [61]. 
However, linear models with DBH as the sole 
predictor predict leaf biomass the least in this 
study. The leaves are the most consumed 
component of M.oleifera [6,70,71]. This heavy 
use explains its abusive exploitation, making the 
individuals less and less healthy. Haoua et al. 
[72] showed that anthropogenic activities are 
major causes of the decrease in biomass of the 
most exploited parts of a woody plant. Ducta et 
al. [73] report the influence of sample quality on 
the models. In this case, it significantly influenced 
the establishment and choice of the leaf model. 
The incorporation of height as a second variable 
in addition to DBH was therefore necessary to 
improve the prediction of leaf biomass. The 
ln(B)=a+bln(D

2
H) and ln(B)=a+bln(D)+cln(H) 

models better predict the biomass of other 
compartments and zones. Including height as a 
secondary variable contributes in some cases to 
the improvement of the model fit. Studies have 
reported that using DBH as a sole predictor of 
biomass underestimates [74] or overestimates 
tree biomass [75,76]. Other studies have 
recommended adding a second and/or third 
variable to the DBH to improve the accuracy of 
biomass estimation [77,78]. In addition, some 

authors like Picard et al.  [41], Ngomanda et al. 
[79] and Sawadogo et al. [80] have found that 
the inclusion of tree height as an integrated or 
secondary independent variable can improve 
model performance with the advantage of 
increasing the applicability of the equations at 
larger scales. Although obtaining tree height in 
forest inventories is not an easy task [81], 
incorporating the height parameter is known to 
significantly improve tree biomass [82,83]. 
Biomass prediction models vary across different 
tree compartments. The results of this study are 
similar to those obtained by Djomo et al. [26], 
Ganame et al. [61], Sawadogo et al. [80], 
Dimobe et al. [84] and Traore et al. [85] who all 
showed variation in the allometric equations 
depending on the parts of the tree. These models 
(except those of the trunk) for the same species, 
also vary according to the climatic zones. 
 

5. CONCLUSION 
 
This study established mono-specific allometric 
equations to predict the biomass of leaves, 
branches, trunks, roots, above-ground and 
below-ground biomass of Moringa oleifera in the 
Sudano-Sahelian zone as well as the High 
guinean savannahs of Cameroon. The three 
models opposite were tested: ln(B) = a + b*ln 
(D), ln(B) = a + b*ln (D

2
H) and ln(B) = a + b*ln(D) 

+ c*ln (H). Tree biomass allocation varies 
between compartments and sites of M. oleifera. 
The DBH as a single variable proved to be the 
best predictor of the global biomass of the 
branches, above-ground biomas of the HSGs 
and global as well as the below-ground biomass. 
However, the incorporation of height as a second 
predictor variable improved the performance of 
predicting the biomass of other compartments in 
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their respective areas. Thus, the best models for 
the prediction of aboveground biomass of M. 
oleifera are -3.653-0.250lnD+5.119lnH (Sudano-
Sahelian), -3.916 + 2.982lnD (High guinean 
savannahs), -2.340 + 2.117lnD (Global) and 
finally for the roots -6.426 + 2.182lnD. The 
results of this study provide a reliable and rapid 
contribution to the assessment of the biomass 
and carbon stock of M. oleifera in agroforestry 
systems under the ecological conditions of 
Cameroon. 
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