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ABSTRACT 
 

Staphylococcus aureus (S. aureus) is one of the most common human pathogens causing various 
infectious diseases. Further, its ability to form biofilm and the emergence of antibiotic resistance 
strains has made it difficult to treat the infection. A nanoparticle-based therapeutic approach is an 
emerging area to treat S. aureus infection. Among the different methods to synthesize 
nanoparticles (NPs), the use of microorganisms to fabricate metal nanoparticles with the 
antibacterial property against S. aureus has been investigated by several studies. The microbial 
approach is cost-effective, eco-friendly, and devoid of toxic byproducts produced in other methods 
of nanoparticles formation. The review details the use of bacteria, fungi, yeast, algae, and lichens 
for producing nanoparticles of various metals, such as silver, gold, zinc, copper, iron, cerium, etc., 
of varying sizes and shapes and their effective use against S. aureus. The present review focuses 
on the reports of microbial-fabricated nanoparticles as therapeutic agents for treating S. aureus 
infection. 
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ABBREVIATIONS 
 

S. aureus : Staphylococcus aureus,  
NPs : Nanoparticles,  

MRSA : Methicillin-resistant Staphylococcus 
aureus,  

VISA : Vancomycin-intermediate 
Staphylococcus aureus,  
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VRSA : Vancomycin-resistant 
Staphylococcus aureus,  

SeNPs : Selenium nanoparticles,  
Cds : Cadmium sulfide,  
ZnS : Zinc sulfide,  
CdS NPS : Cadmium sulfide nanoparticles, 
 

1. INTRODUCTION 
 
Due to pathogenic microorganisms and related 
infectious diseases, the modern world faces a 
difficult situation. Staphylococcus aureus, a 
Gram-positive bacteria belonging to the genus 
Staphylococcus, is one of the most aggressive 
and commonly found human pathogens [1]. 
Although the substantial population infected with 
S. aureus generally remain asymptomatic, with 
bacteria commonly present on the skin or 
mucosal surface [2], it can gain access to the 
bloodstream through any cut present in the skin 
surface [3] and consequently can cause 
debilitating infections like necrotizing fasciitis, 
impetigo, pyomyositis, S. aureus bacteremia, 
mediastinitis, osteomyelitis, septic arthritis, 
meningitis, infective endocarditis, etc. and thus 
affecting various tissues like blood, muscle, and 
skin and vital internal organs like bone, brain, 
lungs, hearts, etc. [4,5,1]. The problem is further 
made complicated by the emergence of drug-
resistant strains of S. aureus, such as Methicillin-
resistant Staphylococcus aureus (MRSA) that is 
resistant to the beta-lactam class of antibiotics, 
for example, methicillin, oxacillin, carbapenems, 
nafcillin, and cephalosporins [6,7]. The MRSA 
can be classified based on genotypic 
characteristics into either hospital-acquired 
MRSA (HA-MRSA), isolated from patients 
admitted to healthcare facilities such as nursing 
homes and hospitals, or community-acquired 
MRSA (CA-MRSA), found in the community with 
no previous history of contact with healthcare 
environment [8,9,10]. The infections due to S. 
aureus affect many people and cause a 
significant number of death annually in the 
United States [11]. 
 

Similarly, MRSA has also spread to other parts 
of the world. It is frequently isolated from 
different geographical regions, including East 
Asia, South Asia, the Middle East, Europe, and 
North Africa [12]. The therapeutic approach 
against MRSA generally involves the application 
of a non-beta-lactam class of antibiotics such as 
vancomycin, daptomycin, delafloxacin [13]. 
Vancomycin, a glycopeptide antibiotic, was 
initially used to treat MRSA strains. However, 
later new strains of S. aureus that were resistant 

to it were clinically isolated from different parts of 
the world; these strains were named 
vancomycin‐intermediate Staphylococcus aureus 

(VISA) and vancomycin‐resistant 
Staphylococcus aureus (VRSA) [14]. Recently, a 
research group has isolated MRSA strains 
showing resistance towards delafloxacin, a 
fluoroquinolone antibiotic commonly used to treat 
MRSA infection [15]. The S. aureus strains 
resistant to delafloxacin were found in 
community-acquired MRSA and MRSA isolated 
from healthcare-related infections, thus indicating 
the gravity of the problem caused by S. aureus 
[15]. 
 
Similarly, other approved antibiotics, such as 
daptomycin, a lipopeptide antibiotic, also have 
witnessed resistance emerging against them by 
S. aureus [16]. Also, according to a report 
published by World Health Organization [17], 
antibiotic-resistant strains pose a serious health 
risk to the population, a threat to food security, 
and a hindrance to the development of a country. 
Such antibiotic resistance strains have made the 
use of any conventional antibiotics obsolete and 
limited the efficacy of another therapeutic 
approach. In the face of such overwhelming 
odds, new therapeutic tools must be added to 
the shrinking arsenal of antibacterial agents in 
the fight against S. aureus infection. 
 
Nanomedicine entails the application of 
nanotechnology in the medical field for 
screening, diagnosis, and therapy of the disease 
[18,19]. Nanomedicine has effectively emerged 
as a potential therapeutic alternative for leading 
cancer and other non-infectious diseases [20]. 
However, nanotechnology for treating infectious 
diseases is continuously growing [21,22]. 
Nanomaterials, specifically nanoparticles, are 
efficacious against various infectious diseases 
[23]. The nanoparticles are small-sized particles 
generally between 1 and 100 nm [24]. The 
nanoparticles that have been utilized in research 
studies against S. aureus are generally 
synthesized via three different methods: 
chemical, microbial-synthesized, and plant-
synthesized. Chemical methods are inherently 
energy-intensive, involve complex methodology, 
and produce byproducts injurious to the 
environment [25]. The chemical method was in 
vogue a few years ago. However, it has given 
way to the more environment-friendly methods 
that utilize either microbial extract or biomass or 
plant extract as reducing and capping agents for 
the synthesis of nanoparticles. 
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On the other hand, although plant-mediated 
nanoparticles synthesis is time-efficient and 
straightforward, it generally produces 
polydispersed nanoparticles due to the presence 
of phytochemicals, such as polyphenols, 
proteins, flavonoids, terpenoids, etc. [26,27]. 
Further, the availability of a plant is hinged on 
certain factors, like the geography of the region 
and season of the year, that in turn affect the 
phytochemical profile of a plant extract to be 
used for the biogenic synthesis of nanoparticles 
[28]. In comparison, the microbial route of 
nanoparticles synthesis is devoid of any such 
requirement, and the experimental conditions 
(temperature, pH, pressure, humidity, etc.) can 
be easily varied to control the size and shape of 
nanoparticles. The microbial methods take 
advantage of microorganisms like bacteria, 
actinomycetes, cyanobacteria, fungi, yeast, and 
algae to fabricate nanoparticles. The microbial-
mediated synthesis of metallic nanoparticles can 
be either extracellular or intracellular, depending 
on the location where the formation of the 
nanoparticles takes place [28,29]. The 
extracellular synthesis has an advantage over 

the intracellular mode of synthesis because it 
does not require downstream processing to 
recover nanoparticles from within the confine of 
the bacterial cell wall [30,31]. A distinct 
advantage of nanoparticles synthesis using 
microbial methods is that its production can be 
increased by scaling up microbial biomass via 
fermentation techniques [32]. 
 
Moreover, nature is abundant with various 
microbes containing diverse biomolecules that 
can reduce nanoparticle synthesis [33,25]. The 
microbes-based synthesis of green nanoparticles 
involves bioreduction of the ionic state of metal 
(e.g., Au3+, Ag+) to the elemental form of the 
metal (e.g., Au0, Ag0) by biomolecules and 
enzymes found in microorganisms [34,30]. 
Further, the microbial biomass can not only be 
used to prepare metal NPs but can also be 
utilized for fabricating metal oxide NPs and bi-, 
tri-, or multi-metallic NPs. Given such 
advantages, it is no surprise that several 
research groups have successfully synthesized 
metallic nanoparticles with antibacterial potential 
against S. aureus from microorganisms (Fig. 1).

 

 
 

Fig. 1. Synthesis of metal nanoparticles from microorganisms. The lichen image is taken from 
http://www.stridvall.se/lichens/gallery/Protoparmeliopsis/AAAA1582?full=1 

 

http://www.stridvall.se/lichens/gallery/Protoparmeliopsis/AAAA1582?full=1
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2. BACTERIAL-FABRICATED NANO-
PARTICLES AGAINST S. aureus 

 

Bacteria is an excellent source for nanoparticle 
synthesis because of their ability to acclimatize 
to the surrounding environment, their ready 
availability, and contain biomolecules that can 
reduce metal ions into their corresponding 
nanoparticles and modify the surface of NPs 
functionalization [35]. Many bacterial species 
have been utilized to synthesize metal 
nanoparticles with toxic properties toward S. 
aureus. Bacteria belonging to many phyla, 
especially Actinobacteria, have been explored to 
synthesize nanoparticles showing antibacterial 
activities toward S. aureus in Table 1. Examples 
of bacteria belonging to the phylum 
Actinobacteria that have been studied for the 
synthesis of metal NPs to control the growth of 
S. aureus (Table 1). 
 
In one such study, Subashini and Kannabiran 
[37] synthesized silver NPs from Streptomyces 
sp. and reported their antimicrobial activity 
against S. aureus. Similarly, in another study, 
biogenic silver NPs were synthesized from 
Streptomyces aureofaciens, an actinomycete, 
and found to be effective at a concentration as 
low as 50 μg/mL against S. aureus [36]. 
Manikprabhu and group [55] prepared spherical 
silver NPs with a size range of 4-50 nm using 
actinobacteria Sinomonas mesophila MPKL 26 in 

a sunlight-mediated green synthesis. They 
reported good antibacterial activity for the 
nanoparticles against the multi-drug-resistant 
strain of S. aureus. Similarly, Raja and John [56] 
fabricated spherical silver NPs of 80 nm size 
from a marine Micromonospora sp., 
actinobacteria, and clinically-isolated drug-
resistant S. aureus. 
 
Although most of the studies using 
Actinobacteria for the nanoparticles synthesis 
fabricate silver NPs, there are reports that 
synthesized gold NPs [44,45,46], zinc NPs [57], 
selenium NPs [40], and metal oxide NPs 
[40,53,54], with antibacterial activities against S. 
aureus. For example, Balagurunathan et al. [44] 
reported intracellular biosynthesis of gold NPs by 
Streptomyces viridogens strain HM10, isolated 
from Himalayan mountain soil, and the biogenic 
gold NPs demonstrated antimicrobial action 
against S. aureus. 
 
In addition to actinobacteria, other bacterial 
species have also been reported for the biogenic 
synthesis of metallic NPs showing antibacterial 
properties against S. aureus. These include 
species belonging to the genera in Table 2. 
Nanda and Saravanan [58] reported the 
extracellular synthesis of silver NPs of the size 
range 160 to 180 nm in a cost-effective process 
by utilizing the wild strain of S. aureus itself. 
Further, the authors showed that the synthesized 

 
Table 1. Antibacterial activities toward S. aureus strains 

 

S.No. Actinobacteria sp. References 

1. Streptomyces aureofaciens MTCC 356 Sundarmoorthi et al., [36] 
2. Streptomyces sp. VITBT7 Subashini and Kannabiran, [37] 
3. Streptomyces sp. JAR1 Chauhan et al., [38] 
4. Nocardiopsis sp. MBRC-1 Manivasagan et al., [39] 
5. Streptomyces enissocaesilis Shaaban et al., [40] 
6. Streptomyces sp. SSHH-1E El-Naggar et al., [41] 
7. Kocuria rosea BS-1 Kumar and Sujitha, [42] 
8. Nocardiopsis valliformis Rathod et al., [43] 
9. Streptomyces viridogens strain HM10 Balagurunathan et al., [44] 
10. Streptomyces sp. B5 Shanmugasundaram et al., [45] 
11. Micrococcus yunnanensis strain J2 Jafari et al., [46] 
12. Streptomyces rochei MHM13 Abd-Elnaby et al., [47] 
13. Actinobacteria SH11 strain Wypij et al., [48] 
14. Streptomyces xinghaiensis OF1 Wypij et al., [49] 
15. Corynebacterium glutamicum Gowramma et al., [50] 
16. Streptacidiphilus durhamensis Buszewski et al., [51] 
17. Streptomyces sp. Al-Dhabi-87 Al-Dhabi et al., [52] 
18. Actinomycetes VITBN4 Nabila and Kannabiran, [53] 
19. Streptomyces zaomyceticus Oc-5 Hassan et al., [54] 
20. Streptomyces pseudogriseolus Acv-11 Hassan et al., [54] 
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Table 2. Metallic NPs showing antibacterial properties against S. aureus 
 

S.No. genera References 

1. Alcaligenes Divya et al., [60] 
2. Aeromonas Singh et al., [61] 
3. Bacillus Velmurugan et al., [62]; Ghiuță et al., [63]; Saravanan et al., [248]; 

Sunkar and Nachiyar, [65]; Rehman et al., [66]; Shivashankarappa 
and Sanjay, [67]; Elbeshehy et al., [68]; Khiralla and El-Deeb, [69]; 
Dalvand et al., [70]; Piacenza et al., [71]; Deljou and Goudarzi, [72]; 
Zare et al., [73]; Shakibaie et al., [74]; Abdallah et al., [75]), 

4. Delftia Shakibaie et al., [76] 
5. Enterococcus Shoeibi and Mashreghi, [77] 
6. Deinococcus Li Sundarmoorthi et al., [36] 
7. Escherichia Cruz et al., [59] 
8. Halococcus Srivastava et al., [78] 
9. Halomonas Taran et al., [79] 
10. Kinneretia Singh et al., [80] 
11. Klebsiella Shahverdi et al., [81]; Malarkodi et al., [82] 
12. Lysinibacillus Bhatia et al., [83] 
13. Novosphingobium Du et al., [84] 
14. Ochrobactrum Thomas et al., [85]; Zonaro et al., [86] 
15. Pantoea Monowar et al., [87] 
16. Pseudomonas Cruz et al., [59]; Barsainya and Singh, [88]; Ashengroph et al., [89]; 

Syed et al., [90]; Punjabi et al., [91]; Shakibaie et al., [92]; Gopinath 
et al., [93]; Banerjee et al., [94]; Pandey et al., [95]; Baker et al., [96] 

17. Ralstonia Srivastava and Mukhopadhyay, [78] 
18. Serratia Dhandapani et al., [97] 
19. Shewanella Vaigankar et al., [98]; Ramasamy et al., [99] 
20. Sporosarcina Singh et al., [100]; Rahimi et al., [101] 
21. Staphylococcus Nanda and Saravanan, [58]; Rauf et al., [102]; Cruz et al., [59] 
22. Stenotrophomonas Zonaro et al., [86]; Cremonini et al., [103] 
23. Thermoactinomyces Deepa et al., [104] 
24. Weissella Singh et al., [105] 

 
silver NPs interfere with the cell wall synthesis of 
S. aureus and inhibit its growth [58]. In the same 
way, S. aureus and its drug-resistant strain 
MRSA were utilized to synthesize selenium NPs 
having antibacterial properties toward S. aureus 
[59]. The authors noted that the selenium NPs 
synthesized from S. aureus and E. coli had their 
highest antibacterial activities against the 
microbe S. aureus and E. coli, respectively. The 
authors proposed an attractive theory that the 
metallic NPs synthesized from a particular 
bacteria are generally most effective towards the 
same bacterial species from which they were 
synthesized [59]. 
 
Similarly, Srivastava and Mukhopadhyay [78] 
synthesized spherical-shaped selenium 
nanoparticles (SeNPs) with a 40–120 nm size 
range from non-pathogenic bacteria Ralstonia 
eutropha. They reported a very high (up to 99%) 
reduction in the growth of S. aureus in the 
presence of selenium NPs. Moreover, biogenic 
SeNPs exhibited higher efficiency, indicated by a 

lower MIC value of 100 μg/mL than conventional 
antibiotic ampicillin, with a MIC value of 250 
μg/mL, against S. aureus [78]. Selenium NPs 
synthesized by many other bacteria such as 
Stenotrophomonas maltophilia SeITE02 [86], 
Enterococcus faecalis [77], Staphylococcus 
aureus [59], MRSA [59], Escherichia coli [59], 
and Pseudomonas aeruginosa [59] also have 
been shown to inhibit the growth of S. aureus. 
Similarly, Bacillus sp. is also reported for the 
biosynthesis of selenium NPs that can kill S. 
aureus bacteria. For instance, Shakibaie and 
others [74] synthesized selenium and selenium 
oxide NPs from MSh-1 strain of Bacillus. They 
showed that the nanoparticles inhibit biofilm 
formation by clinically-isolated S. aureus, 
including other human pathogens. Coating 
medical implant devices with microbial-
synthesized nanoparticles can be a novel 
approach to remove the possibility of S. aureus 
infection. For example, Sonkusre and Cameotra 
[106] coated polystyrene, glass, and catheter 
surfaces with SeNPs synthesized from bacteria 
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Bacillus licheniformis JS2 and found that the 
coated surface can inhibit the biofilm formation 
by S. aureus. 
 
Bacteria can also synthesize nanoparticles of 
different morphology that act against S. aureus. 
Dhandapani and group [97] grew ZnO 
nanocrystals of various shapes, such as 
spherical nanoflower, on the cotton fabric surface 
by successfully utilizing activated ammonia 
synthesized from ureolytic bacteria Serratia 
ureilytica. The authors further reported that the 
cotton fabrics loaded with ZnO NPs showed 
good antibacterial activity against S. aureus. 
Singh et al. [107] obtained anisotropic silver NPs 
of various shapes such as nano bar, pentagonal, 
spherical, icosahedral, hexagonal, truncated 
triangle, and triangular shapes, with particle size 
ranging between 30 and 100 nm from 
Bhargavaea indica in an extracellular synthesis 
process. Further, the synthesized silver NPs 
exhibited antibacterial activity against S. aureus. 
They improved commercial antibiotics' 
antimicrobial activity, including lincomycin, 
vancomycin, novobiocin, penicillin G, 
cycloheximide, and rifampicin against S. aureus 
[107]. 
 
To combat S. aureus, bacteria-synthesized metal 
oxide and multi-metal nanoparticles have also 
been synthesized successfully from bacteria. For 
example, Taran et al. [79] synthesized ZnO and 
TiO2 NPs from the bacteria Halomonas elongata 
IBRC-M 1021 and reported the antibacterial 
activity of ZnO NPs against S. aureus. In another 
study, the bismuth oxide nanoparticles, i.e., 
Bi2O3, an oxide of non-toxic metal bismuth, were 
synthesized by Dalvand and others [70] from the 
bacteria Bacillus licheniformis PTCC1320. The 
cube-shaped Bi2O3 NPs with sizes in the range 
of 26 to 62 nm were found to inhibit the growth of 
S. aureus in a concentration-dependent manner 
[70]. Similarly, Ramasamy et al. [99] prepared 
bimetallic gold-silver (Au-Ag) NPs from 
Shewanella oneidensis MR-1. They found that 
the bimetallic NPs are capable of inhibiting the 
growth and inhibiting the biofilm formation of S. 
aureus. Besides metal oxides, cadmium sulfide 
(CdS) and zinc sulfide (ZnS) nanoparticles have 
been synthesized from bacteria and possess 
suitable antibacterial activities against S. aureus. 
For example, Malarkodi and group [82] 
synthesized spherical-shaped CdS and ZnS 
NPs, with sizes 10 to 25 and 65 nm, from 
Klebsiella pneumoniae (strain MAA) 
extracellularly. Further, the authors found 
excellent antibacterial activities for CdS and ZnS 

NPs against S. aureus in a concentration-
dependent manner. Similarly, CDs NPs with an 
average size of 6.7 ± 2.4 nm obtained from the 
cell-free extract of bacteria Pseudomonas 
chlororaphis CHR05 also showed excellent 
antibacterial properties toward S. aureus [89]. 
 
Cyanobacteria, alternatively known as blue-
green algae, are particular bacteria capable of 
deriving energy through photosynthesis. 
Recently, aqueous extracts of cyanobacteria 
Trichodesmium erythraeum were utilized to 
synthesize silver NPs with the cube-shaped and 
average size of 26.5 nm active against the 
tetracycline-resistant strain of strain S. aureus 
[108]. The silver NPs with sizes in the range of 
40 to 80 nm biosynthesized from cell biomass of 
cyanobacteria Microcoleus sp. isolated from 
mangrove acted as an excellent antibacterial 
agent toward S. aureus [109]. Uma Suganya et 
al. [110] used protein extracted from 
cyanobacteria Spirulina platensis as a reducing 
and stabilizing agent to synthesize spherical-
shaped gold NPs with sizes ranging from 2 to 8 
nm. They reported the dose-dependent killing of 
S. aureus due to the piercing of its thick 
peptidoglycan layer by gold NPs. 
 
Similarly, an aqueous extract of Spirulina 
platensis was used by Sharma et al. [111] for the 
extracellular synthesis of anti-S. aureus silver 
NPs. The extracts of cyanobacteria Leptolyngbya 
JSC-1 were used to fabricate silver and gold NPs 
with antibacterial potential toward S. aureus 
[112,113]. 
 
One crucial thing in the microbial fabrication of 
NPS is that the bacteria for the synthesis of 
nanoparticle that acts against S. aureus must be 
carefully chosen because nanoparticles of a 
metal synthesized from two different bacteria 
may behave differently against S. aureus. For 
example, Wang and group [114] synthesized 
gold NPs from the bacteria Microbacterium 
resistance. They found no antibacterial activity 
for nanoparticles against S. aureus. In contrast, 
gold NPs synthesized from Deinococcus 
radiodurans [115] and Pseudomonas fluorescens 
417 [90] could inhibit the growth of S. aureus. 
 
Several studies have investigated the reduction 
of metal ions into nanoparticles by bacterial 
extract and concluded that bacterial enzymes 
like reductase, proteins, etc., are responsible for 
metal ion reduction [30]. Although bacteria have 
been used frequently to synthesize nanoparticles 
for inhibiting and killing S. aureus, bacterial-
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mediated synthesis entails a time-consuming 
optimization step and complex nanoparticles 
extraction and purification step [116,30]. 
 

3. FUNGI-FABRICATED NANOPARTICLES 
AGAINST S. aureus 

 
Fungi are another microorganism that has been 
used to synthesize effective metal nanoparticles 
versus S. aureus [117,118,119]. In comparison 
to the bacteria, NPs synthesis from fungi has 
advantages like tolerating high metal 
concentrations. They can endure higher flow 
pressure and agitation in bioreactors, the easier 
downstream processing, faster growth rate and 
easier maintenance, and excellent production of 
extracellular enzymes that can be used as a 
reducing agent [120,116,121,122,123]. Silver 
nanoparticles with antibacterial properties toward 
S. aureus have been synthesized from the 
various fungal genus in Table 3. 
 

In a study, authors isolated filamentous fungi 
(Aspergillus terreus SP5, Paecilomyces lilacinus 
SF1, and Fusarium sp. MP5) from the soil of high 
altitude and cold climatic regions of eastern 
Himalayan. They used them to synthesize silver 
NPs that exhibited antimicrobial activity against 
S. aureus MTCC96 [147]. Furthermore, the 
mycosynthesized silver NPs showed a 
synergistic effect with antibiotics like 
chloramphenicol, ciprofloxacin, erythromycin, 
and methicillin against S. aureus MTCC96 [147]. 
Likewise, Gudikandula et al. [161] isolated 
multiple strains of Basidiomycetes from a forest 
region. Among these two strains, Ganoderma 
enigmatic and Trametes ljubarskyi were utilized 
to synthesize silver NPs that showed 
antibacterial activity against S. aureus. Similarly, 
Chan and Don [181] employed two white-rot 
fungi, Schizophyllum commune and Pycnoporus 
sanguineus, for the biosynthesis of silver NPs 
and examined their potential to inhibit the growth 
of S. aureus. Silver NPs synthesized from S. 
commune were shown to be most effective 
against S. aureus, as observed by its zone of 
inhibition of about 2.0 cm [181]. Similarly, in 
another study, blight-causing pathogenic fungus 
Cryphonectria sp. was isolated from the stems of 
chestnut and was used for the extracellular 
synthesis of silver NPs [154]. These silver NPs 
exhibited higher antibacterial activity than AgNO3 
and conventional antibiotic streptomycin against 
S. aureus [154]. Gudikandula and Maringant 
[122] reported that fungus Pycnoporus sp. 
(HE792771) synthesized silver NPs showed 

more excellent antibacterial activity, with a higher 
zone of inhibition in the well-diffusion assay than 
chemically synthesized silver NPs toward S. 
aureus. Some studies used fungi synthesized 
metal NPs in combination with conventional 
antibiotics and reported synergistic antibacterial 
effect towards S. aureus at a lower concentration 
than when both metal NPs and antibiotics were 
used individually [185,180,147]. Such a 
therapeutic approach enhances the efficacy of 
chemical antibiotics by reducing its minimum 
inhibitory concentration significantly against S. 
aureus. 
 
Metal nanoparticles other than silver have also 
been synthesized from fungi and shown to be an 
excellent antibacterial agent to treat S. aureus 
infection. For example, gold NPs synthesized 
from marine endophytic fungus Cladosporium 
cladosporioides isolated from seaweed 
Sargassum wightii were found to inhibit the 
growth of S. aureus by disrupting its cell 
membrane [188]. Further, as per the authors, the 
bioreduction of gold metal salts to nanoparticles 
was mediated by NADPH-dependent reductase 
and phenolic compounds present in the aqueous 
extract of the fungus [188]. In another study, 
authors fabricated gold NPs with spherical shape 
and size ranging from 10.3 to 38.7 nm from an 
aqueous extract of oyster mushroom, Pleurotus 
ostreatus (Jacq. ex. Fr.) Kummer reported its 
growth inhibition property against S. aureus 
[189]. Mohamed and group [190] employed 
Alternaria alternata fungi to synthesize cubic-
shaped iron oxide NPs with antibacterial 
potential toward S. aureus. 
 
Similarly, Sidkey et al. [191] fabricated iron NPs 
intracellularly and extracellularly from Aspergillus 
foetidus. The size of the iron NPS ranges from 
31.53 to 61.94 nm and 80 to 370 nm for intra- 
and extracellular particles, respectively, and both 
for both types of nanoparticles showed the ability 
to inhibit the growth of S. aureus [191]. 
Munusamy and group [192] fabricated spherical-
shaped cerium oxide NPs of size 5 to 20 nm 
from the precursor cerium chloride heptahydrate 
by using culture filtrate of fungi Curvularia lunata 
and further reported the antibacterial activity of 
synthesized nanoparticles versus S. aureus. 
Alrabadi et al. [193] synthesized magnesium 
oxide NPs extracellularly by employing fungi 
Trichoderma viride. Moreover, reported better 
antibacterial activity for the green NPs than the 
antibiotic amoxicillin against S. aureus. 
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Table 3. Silver nanoparticles by means of antibacterial properties toward S. aureus, 
synthesized from the a number of fungal genus 

 

S.No. Fungus genus References 

1. Agaricus Mirunalini et al., [124],ul-Haq et al., [125]; Sriramulu and Sumathi, [126] 
2. Alternaria Ibrahim and Hassan, [127]; Shaheen and Abd El Aty, [128]; Singh et al., 

[129] 
3. Amylomyces Musarrat et al., [130] 
4. Aspergillus Nayak and Anitha, [131]; Rodrigues et al., [132]; Saravanan and Nanda, 

[133]; Bharathidasan and Panneerselvam, [134]; Naqvi et al., [135]; 
Rajakumar et al., [136]; Barapatre et al.; [137]; Fatima et al., [138]; 
Shahzad et al., [139]; Sagar and Ashok, [140]; Kathiresan et al., [141]; 
Ottoni et al., [142]; Binupriya et al., [143]; Nanda et al., [144]; 
Balakumaran et al., [145]; Li et al., [146]; Devi and Joshi, [147]; Netala et 
al., [148]; Khan et al., [149] 

5. Beauveria Prabakaran et al., [150] 
6. Bionectria Rodrigues et al., [132] 
7. Calocybe Mirunalini et al., [124] 
8. Chaetomium Singh et al., [151] 
9. Colletotrichum Azmath et al., [152] 
10. Cordyceps Wang et al., [153] 
11. Cryphonectria Dar et al., [154] 
12. Emericella Barapatre et al., [137] 
13. Fusarium Ingle et al., [155]; Bawskar et al., [156]; Gholami-Shabani et al., [157]; 

Joshi et al., [158]; Husseiny et al., [159]; Mekkawy et al., [160] 
14. Ganoderma Gudikandula et al., [161]; Jogaiah et al., [162]; Mohanta et al., [163]; 

Sriramulu and Sumathi, [126]; Mirunalini et al., [124] 
15. Guignardia Balakumaran et al., [164] 
16. Macrophomina Joshi et al., [158] 
17. Monascus El-Baz et al., [165] 
18. Mucor Aziz et al., [166] 
19. Nigrospora Shaheen and Abd El Aty, [128]; Muhsin and Hachim, [167] 
20. Penicillium Singh et al., [168]; Ma et al., [169]; Sarsar et al., [170]; Hamad, [171]; 

Shaheen and Abd El Aty, [128]; Majeed et al., [172]; Nayak et al., [173]; 
Bharathidasan and Panneerselvam, [134]; Feroze et al., [123] 

21. Pleurotus Kaur et al., [174]; Debnath et al., [175]; Al-Bahrani et al., [176]; Devika et 
al., [177]; Mirunalini et al., [124]; Nithya and Raghunathan, [178]; 
Vigneshwaran et al., [179] 

22. Paecilomyces Devi and Joshi, [147] 
23. Pestalotia Raheman et al., [180] 
24. Phenerochaete Saravanan et al., [64] 
25. Phomosis Bharathidasan and Panneerselvam, [134] 
26. Pycnoporus Chan and Don, [181]; Gudikandula and Maringanti, [122] 
27. Rhizopus Ottoni et al., [142] 
28. Schizophyllum Chan and Don, [142]; Gudikandula et al., [182] 
29. Sclerotinia Saxena et al., [183] 
30. Scopulariopsis Hamad, [171] 
31. Trametes Gudikandula et al., [161] 
32. Trichoderma Kumari et al., [184]; Fayaz et al., [185]; Saravanakumar and Wang, 

[186]; Ottoni et al., [142]; Ahluwalia et al., [187] 

 
Similarly, Ganesan and others [194] utilized an 
aqueous extract of fungus belonging to 
Periconium sp. To synthesize ZnO NPs with 
hexagonal shape and size of 40 nm and found 
excellent antibacterial activity for the 
nanoparticles toward S. aureus in a 

concentration-dependent manner. In an exciting 
study, the authors used the fungus Aspergillus 
welwitschia to fabricate oval and spherical 
shaped tellurium NPs that exhibited antibacterial 
activity against MRSA; S. aureus was resistant 
toward the tellurium NPs [195]. Recently, some 
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fungal strains such as Aureobasidium pullulans, 
Mortierella humilis, Trichoderma harzianum, and 
Phoma glomerata were utilized to biosynthesize 
selenium and tellurium NPs [196]. Although 
authors did not study the antibacterial properties 
of fungal-synthesized selenium and tellurium 
NPs, these can be an excellent prospect for 
nanotherapeutic against S. aureus infection 
[196]. 
 

4. YEAST-FABRICATED NANO-
PARTICLES AGAINST S. aureus 

 
Yeast is another crucial category of organisms 
that have been used for the green synthesis of 
nanoparticles exhibiting anti-S. aureus activity. 
Like fungi, yeast also possesses more 
advantages than bacteria, such as fast growth 
rate, simple nutrient requirement, adept in 
producing enzymes in high amounts, etc. [197]. 
Few studies have applied yeast to synthesize 
metal nanoparticles to counter the growth of S. 
aureus. For example, Dinesh and group [197] 
employed Candida sp. VITDKGB, a marine 
yeast, was collected from Nicobar Islands, India, 
to synthesize silver NPs of 87 nm size and 
reported the excellent antibacterial activity of 
NPS against S. aureus. Mishra et al. [198] 
synthesized near-spherical silver and gold NPs 
in the size range of 10–20 nm and 50–70 nm, 
respectively, from the yeast Candida 
guilliermondii. They found both types of 
nanoparticles to be active against S. aureus. In a 
similar study, silver and gold NPs of the average 
size of 30 nm and 5 nm respectively were 
synthesized using cell-free extract of fungus 
Candida albicans. They inhibited the growth of S. 
aureus [199]. Candida albicans was also utilized 
in another study to synthesize silver NPs having 
an average size in the range of 20-8 nm and of 
various shapes such as spherical, rod-like, 
decahedral, triangular, and platelet-like exhibited 
antibacterial activity against S. aureus in agar 
disc diffusion test [200]. Bhat and group [201] 
synthesized silver NPs utilizing Candida albicans 
and investigated their antibacterial effect when 
used alone and combined with the antibiotic 
ciprofloxacin on S. aureus. The authors found 
antibacterial activity for silver NPs when used 
alone. They observed an increase in antibacterial 
activity of the antibiotic when used in 
combination with the silver NPs against S. 
aureus [201]. Jalal and group [202] isolated 
yeast Candida glabrata from oropharyngeal 
mucosa of human immunodeficiency virus 
patients and synthesized silver NPs. The 
synthesized silver NPs were spherical with size 

within the range of 2–15 nm and could inhibit the 
growth of S. aureus [202]. Waghmare et al. [203] 
employed Candida utilize for the extracellular 
biosynthesis of silver NPs that was a spherical 
shape with size in the range of 20–80 nm and 
reported the bactericidal activity of silver NPs 
against S. aureus via agar disc diffusion assay. 
Eugenio and group [204] biosynthesized silver 
NPs and AgCl NPs using yeast Candida 
lusitaniae isolated from the gut of termites and 
reported strong growth inhibitory potential of 
nanoparticles toward S. aureus. The yeast 
Kluyveromyces marxianus was employed for the 
bioproduction of silver NPs of spherical shape 
with a size range between 3 and 12 nm, and the 
obtained silver NPs showed antibacterial activity 
against the drug-resistant strain of S. aureus 
[205]. Badhusha and Mohideen [206] 
biosynthesized silver NPs of different sizes and 
shapes by controlling pH from Saccharomyces 
cerevisiae; the synthesized silver NPs were toxic 
to the S. aureus growth in well diffusion test. 
 
Metal nanoparticles other than silver metals have 
also been synthesized from yeast and 
investigated for their efficacy against S. aureus. 
To give an example, Moghaddam et al. [207] 
used ZnO NPs of hexagonal wurtzite structure 
with size in the range of 10–61 nm synthesized 
from the yeast Pichia kudriavzevii and reported 
the effectiveness of green ZnO NPs to inhibit the 
growth of S. aureus. Similarly, Chauhan et al. 
[208] reported extracellular biosynthesis of ZnO 
NPs from Pichia fermentans JA2 isolated from 
spoiled fruit pulp and observed zone of inhibition 
against S. aureus in disc diffusion assay. Peiris 
and group [209] biosynthesized spherical-shaped 
titanium dioxide NPs (TiO2NPs) with an average 
size of 6.7±2.2 nm using Baker’s yeast, i.e., 
Saccharomyces cerevisiae. Further, the authors 
found that the combination of green TiO2NPs 
and sunlight is an excellent antibacterial agent 
toward S. aureus [209]. In another study, Venkat 
Kumar et al., [247] synthesized cadmium sulfide 
nanoparticles (CdS NPS) of spherical shape and 
in size range 50-60 nm using Candida albicans 
and noted that the CdS NPs are capable of 
inhibiting the growth of S. aureus in a 
concentration-dependent manner. 
 

5. ALGAE-FABRICATED NANO-
PARTICLES AGAINST S. aureus 

 
Algae are the photosynthetic eukaryotic 
organisms. That belong to a diverse group 
containing both unicellular and multicellular 
organisms. Algae are rich in biomolecules like 
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carbohydrates, protein, fats, nucleic acids; 
pigments like carotenoids, chlorophylls, and 
phycobilins; and important secondary 
metabolites like alkaloids, terpenes, polyphenols, 
etc. [210]. These natural chemicals can be an 
excellent reducing and stabilizing agent for the 
synthesis of nanoparticles. Algae, both 
microalgae and macroalgae have been 
employed in the eco-friendly and cost-effective 
green synthesis of metal NPS with the ability to 
kill S. aureus bacteria. To illustrate, Aziz et al. 
[211] used a freshwater green algae Chlorella 
pyrenoidosa. They reported successful 
biosynthesis of silver NPs with the size 
distribution of 8±2 nm showing antibacterial 
activity against S. aureus. According to the 
authors, the silver NPs capped with protein 
disrupted the S. aureus cell membrane, reached 
inside the cells, and caused the production of 
active oxygen species, thus killing the bacteria 
[211]. Similarly, good antibacterial activity 
against S. aureus was exhibited by silver NPs, of 
spherical and triangular shape and size in the 
range of 5 to 25 nm, synthesized from marine 
green algae Caulerpa racemosa isolated from 
the South-East coast of India [212]. Green algae 
Caulerpa serrulata was used by Aboelfetoh et al. 
[213] to synthesize silver NPs with spherical 
shape and an average size of 10±2 nm to check 
the growth of S. aureus. The green algae such 
as Chlorella Vulgaris [214,215], Enteromorpha 
flexuosa (wulfen) J. Agardh [216], Spirogyra sp 
[217,218], Urospora sp. [219], Pithophora 
oedogonia (Mont.) Wittrock [220], Enteromorpha 
compressa [221] have also been reported for the 
synthesis of silver NPs with toxicity towards S. 
aureus. El-Rafie and group [222] extracted 
water-soluble polysaccharides from red 
(Pterocladia capillaries, Jania rubins), green 
(Ulva facial), and brown (Colpmenia sinus) algae 
to reduce and stabilize silver ions for the 
preparation of silver NPs. The functionalized NPs 
were found to be stable for an extended period, 
and cotton fibers immobilized with the 
nanoparticles showed potential to be used as an 
antiseptic wound dressing [222]. Silver NPs 
synthesized from brown marine weed 
Sargassum wightii Greville isolated from the 
infected silkworm Bombyx mori L. A strong zone 
of inhibition was obtained against S. aureus 
[223]. Similarly, other species of genus 
Sargassum, such as S. cinereum, S. ilicifolium, 
S. wightii, have also been utilized to synthesize 
silver NPs having the antibacterial potential to 
prevent S. aureus growth [224,225,226]. Further, 
another brown alga like Ecklonia cava [227] and 
Turbinaria ornata [228] have also emerged as 

efficient vehicles for the anti-S. aureus silver NPs 
synthesis. Pugazhendhi et al. [229], using marine 
red algae Gelidium amansii synthesized 
spherical-shaped silver NPs with size in the 
range 27-54 nm and reported its detrimental 
effect on S. aureus bacteria. Ethanolic extract of 
Acanthophora specific, marine red algae served 
as a capping and reducing agent in the formation 
of cubic-shaped silver NPs, with sizes ranging 
between 33 and 81 nm, that was destructive to 
S. aureus [230]. Similarly, Kumar et al. [231] also 
used Acanthophora specifera to fabricate silver 
NPs. However, in this case, the authors obtained 
spherical-shaped NPs, of 48 nm size that 
inhibited the biofilm formation by S. aureus. De 
Aragão and group [232] extracted a 
polysaccharide from red algae Gracilaria birdie. 
They used it as a reducing and stabilizing agent 
for the synthesis of silver NPs to inhibit S. aureus 
growth. Aqueous extract of red algae Amphiroa 
fragilissima [233] prepared silver NPs with 
effective antibacterial activity toward S. aureus. 
Silver chloride NPs with an average diameter of 
9.8±5.7 nm prepared from Chlorella Vulgaris 
reduce the viability of S. aureus up to 98% in a 
dose-dependent manner [234]. 
 
Ramakritinan et al. [235] synthesized silver, gold, 
and bimetallic silver-goldNPs (in three different 
ratios: 1:1, 1:3, and 3:1) from marine red alga 
Gracilaria sp. and found silver NPs and bimetallic 
NPs with Ag: Au ratio of 1:3 to be most effective 
against S. aureus. Similarly, the aqueous extract 
of marine algae Gracilaria corticata was used as 
a reducing agent to prepare gold NPs that 
showed good antibacterial activity against S. 
aureus in well diffusion test [236]. Abdel-Raouf et 
al. [237] prepared gold NPs with the size 
distribution of 3.85–77.13 nm and distinct shapes 
like a spherical rod, truncated, triangular, 
hexagonal from the ethanol extract of red algae 
Galaxaura elongate and reported the efficacy of 
fabricated NPs toward both MRSA and S. 
aureus. In another study, an aqueous extract of 
green microalga Chlorella Vulgaris was utilized 
to prepare spherical-shaped gold NPs, with sizes 
ranging between 2 and 10 nm, that was found to 
be toxic to S. aureus in agar well diffusion assay 
[238]. Gold NPs of various shapes like grain, 
triangular, and spherical were fabricated from 
diatom Nitzschia found to inhibit the growth of S. 
aureus [239]. Diatom-fabricated gold NPs further 
enhanced the antibacterial effects of commercial 
antibiotics penicillin and streptomycin 
synergistically against S. aureus [239]. 
Polydispersed gold NPs fabricated from marine 
red algae Kappaphycus alvarezii inhibited the 
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growth of S. aureus in the disc diffusion assay 
[240]. Abboud et al. [241] reported the synthesis 
of majorly spherical-shaped copper oxide NPs 
(mixture of cuprous and cupric oxide NPs) of 5–
45 nm dimension using brown algae Bifurcaria 
bifurcata. They showed the toxicity of 
nanoparticles to S. aureus. On the other hand, 
Arya et al. [242] utilized green algae 
Botryococcus braunii to synthesize a mixture of 
cuprous and cupric oxide NPs. The green copper 
oxide NPs had cubical and spherical with an 
elongated shape and were an effective 
nanotherapeutic agent against S. aureus [242]. 
Ishwarya and group [243] prepared spherical 
ZnO NPs of 40-50 nm size by utilizing hot water 
extracts of marine seaweed Sargassum wightii. 
They recorded the anti-biofilm activity of ZnO 
NPs against S. aureus. 
 

6. LICHEN-FABRICATED NANO-
PARTICLES AGAINST S. aureus 

 
Lichens are the symbiosis between a fungus and 
an alga living mutually beneficial relationships. 
Lichens possess several secondary metabolites, 
antioxidants, etc., that can be used as reducing 

agents for nanoparticle synthesis. There are very 
few studies using lichens to synthesize 
nanoparticles and their use as antibacterial 
nanotherapeutic against S. aureus. For example, 
Alavi et al. [244] used an aqueous extract of 
lichen Protoparmeliopsis muralis to synthesize 
nanoparticles of various metals such as Ag, Cu, 
Fe3O4, TiO2, and ZnO. The synthesized metal 
NPs were all in a spherical shape, and the 
average size was 33.49±22.91, 253.97±57.2, 
307±154, 133.32±35.33, and 178.06±49.97 nm 
for Ag, Cu, Fe3O4, TiO2, and ZnO NPs, 
respectively. Moreover, all metallic NPs were 
found to possess bacteriostatic and bactericidal 
properties against S. aureus, and the 
antibacterial activities of nanoparticles were in 
the following order: Ag > ZnO > Fe3O4 > Cu > 
TiO2 [244]. Similarly, another lichen Usnea 
longissima was used to form spherical shaped 
silver NPs of 9.40–11.23 nm size, and the 
nanoparticles exhibited antibacterial activity 
toward S. aureus [245]. Din and group [246] 
prepared silver NPs of 13 nm size from an 
aqueous extract of the lichen Ramalina 
dumeticola and reported the nanoparticles to be 
effective against MRSA (Fig. 2). 

 

 
 

Fig. 2. Mode of antibacterial action of microbial-synthesized metal nanoparticles against S. 
aureus 
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7. CONCLUSION 
 

Nanomaterials have spawned a great deal of 
attention from the scientific community. Similarly, 
interest in S. aureus is also increasing because it 
is a common pathogen causing severe infections 
and the growing emergence of new drug-
resistant strains. It is no surprise that metal 
nanoparticles have emerged as a great prospect 
to treat infectious diseases in these scenarios. 
Although a chemical process also produces 
metal nanoparticles, it is energy-intensive, cost-
intensive, and environmentally harmful due to the 
generation of toxic materials. The synthesis of 
metal nanoparticles from the microorganism to 
treat S. aureus infection is an excellent 
alternative to the problem. The abundance and 
diversity of the microbial world present us with an 
excellent opportunity for nanoparticle synthesis 
that is environmentally benign and economically 
cost-effective. This review discussed the 
production of metal nanoparticles using various 
microbes, such as bacteria, fungi, yeast, and 
lichens, and their application to combat the 
growth of pathogenic bacteria S. aureus, 
including its resistant strains. Nanoparticles of 
silver metal have been most commonly 
synthesized from microorganisms to treat S. 
aureus. Further, nanoparticles of metals like 
gold, zinc, iron, titanium, copper, metal oxides, 
and multi-metals have also been synthesized 
from microbes by a substantial number of studies 
to combat the S. aureus. Though the use of 
microbial-fabricated metal nanoparticles as the 
bacteriostatic and bactericidal agent against S. 
aureus is shown to be effective by many studies, 
the research into their benefit and toxicity to 
humans must be appropriately investigated 
further so that they can be effectively used in 
practical clinical settings. 
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