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Abstract: In this study, a novel robust observer-based adaptive controller was formulated for systems
represented by second-order input–output dynamics with unknown second state, and it was applied
to concentration tracking in a chemical reactor. By using dead-zone Lyapunov functions and adaptive
backstepping method, an improved control law was derived, exhibiting faster response to changes
in the output tracking error while avoiding input chattering and providing robustness to uncertain
model terms. Moreover, a state observer was formulated for estimating the unknown state. The
main contributions with respect to closely related designs are (i) the control law, the update law and
the observer equations involve no discontinuous signals; (ii) it is guaranteed that the developed
controller leads to the convergence of the tracking error to a compact set whose width is user-defined,
and it does not depend on upper bounds of model terms, state variables or disturbances; and (iii) the
control law exhibits a fast response to changes in the tracking error, whereas the control effort can be
reduced through the controller parameters. Finally, the effectiveness of the developed controller is
illustrated by the simulation of concentration tracking in a stirred chemical reactor.

Keywords: state observer; robust control; adaptive control; second-order system; lyapunov stability

1. Introduction

In control design for systems described by continuous time nonlinear models of second
or higher-order and unknown states, the convergence of the tracking error to a predefined
compact set with no large transient values is usually required, with the capability of
tackling the lack of knowledge on the exact value or upper bound of model terms, model
parameters and external disturbances [1–3]. Moreover, effective state observers are required
for estimating unknown state variables, which may appear due to high cost, noise or other
measurement issues [4–6]. It is important to guarantee both fast convergence and the
capability of coping with disturbances [7]. In particular, sliding mode observers can be
used to estimate the unknown state, in the presence of unknown disturbances and model
uncertainties [8–10].

In Reference [9], an observer-based output feedback control was formulated for an
aerial vehicle with external disturbance, model uncertainties and input saturation. The
model uncertainties were approximated by neural networks. A state observer was de-
signed for estimating the unknown state variables, and it included an estimation of the
unknown external disturbance. A second-order sliding controller was formulated. The
main limitations were (i) the observer error and the tracking error converge to a compact set
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whose width is function of the upper bound of the nonlinear approximation error, (ii) the
controller involves a signum type signal and (iii) the control gain is assumed accurately
known in the formulated observer. In Reference [7], a robust controller was designed for
a permanent magnet synchronous motor (PMSM), using a second-order sliding mode
observer. The system model was expressed as a second system. The observer was used
for estimating the unknown load torque. The first limitation was that the sliding surface
converged to a compact set whose width was a function of the upper bound of the time
derivative of the observation error of the unknown load torque. This implies that such a
bound is required to be known for achieving the expected width of the residual observation
error. The second limitation was that the model uncertainty (load torque) was assumed
constant. In Reference [4], an adaptive sliding mode control was proposed for trajectory
tracking of a class of high-order nonlinear systems with unknown model mismatches and
unknown external disturbances. A fixed-time-state observer was proposed for estimating
the unmeasured states. Adaptive laws were used for estimating the upper bound of the
lumped uncertainties. The main limitations were (i) in the observer, the upper bound of
the known state was required to be known; (ii) the control gain was assumed as accurately
known in the formulated controller; and (iii) the first observer dynamics involved a dis-
continuous signum type term. In Reference [11], a robust output feedback controller was
designed for spacecraft position and attitude control in the presence of uncertain system
parameters and external disturbances. A finite time second-order sliding mode filter was
designed for estimating the unknown state variables, which were the time derivatives of
the tracking errors. The main limitations were (i) the output estimation errors converge
to compact sets whose size depended on the upper bounds of the time derivatives of the
second and first state variables; and (ii) the control gain was assumed accurately known in
the formulated controller.

In Reference [12], a neurodynamic quantized controller was designed for microelec-
tromechanical system (MEMS) gyroscopes, comprising a lumped disturbance term caused
by uncertainty on model parameters, dynamic coupling and external disturbances. The
lumped disturbance was estimated by a novel echo state network approximator. A hys-
teresis quantizer was introduced in the control signal, so as to generate discrete values
of control signal, in order to facilitate the application of the controller in MEMS gyro-
scope using digital devices. A modified prescribed performance control (PPC) strategy
is proposed in order to achieve satisfactory transient behavior of tracking error, avoiding
large overshoot. To this end, the transient boundary for the tracking error is defined via
a hyperbolic cosecant function. In Reference [13], a fault-tolerant quantized controller
was designed for flexible air-breathing hypersonic vehicles (FAHVs), with appointed-time
tracking performance. To identify the lumped effect of actuator faults, parameter uncer-
tainties and external disturbances, a hysteresis quantizer based neural estimator (HQNE)
was proposed. An auxiliary system was employed in order to tackle the effect of input
saturation. An improved appointed-time prescribed performance control (APPC) was
proposed in order to make the tracking errors reach the predefined residual sets within
a prescribed time. To this end, the transient boundary of the tracking error behavior was
defined by using a hyperbolic cosecant function.

As can be noticed from the literature works discussed above, robust control designs
commonly exhibit robustness and tracking error performance capability, but they fail to
fulfill the following features simultaneously: (i) estimation of unknown states; (ii) capa-
bility of tackling the effect of input saturation, guaranteeing that all closed loop signals
are bounded; (iii) absence of discontinuous signals in the control law, the update law, the
observer equations and in additional states; and (iv) not complex adjustment of the con-
troller parameters and low control effort [1–3]. Indeed, robustness is commonly achieved
while either prior knowledge on the upper bound of model disturbance term is required or
discontinuous signals are used in the control law, observer equations or additional states:

- Prior knowledge on upper bounds of plant model terms, model uncertainties, param-
eters or disturbances is required by several robust control designs; however, this is not
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possible in many practical applications [3,14]. Indeed, either of the following cases
arise: (i) the stability analysis for the Lyapunov function indicates that the tracking
error converges to a compact set whose width depends on upper bounds of model
uncertainties, including model parameters, modeling error and external disturbances,
as in References [9,11,12]; or (ii) the width of the compact set is user-defined or zero,
but the definition of the controller parameters requires the upper bounds, as in Refer-
ence [15]. Therefore, to obtain a compact set of user-defined width, the upper bound
of model uncertainties must be known.

- Discontinuous signals are used in either the observer, the control law, the update
law or an additional state, as, for instance, in References [4,9,16–18]. The presence
of discontinuous signals in the vector field of the closed-loop system may imply the
following: (i) failure of trajectory unicity [19,20], (ii) the need of using Filippov’s con-
struction in case of sliding motion [19–22], (iii) problematic numerical solution [23],
and (iv) input chattering [19]. Therefore, it is convenient to avoid discontinuous
function in the observer dynamics, update laws, control law and additional states. In
several control designs, discontinuous signals are avoided in the control signal by us-
ing filtering or integration of these signals, as, for instance, in References [1,2,14,15,24].
This implies that discontinuous signals appear in the dynamics of the additional
states. Although this avoids input chattering, the avoidance of problematic numerical
solution of the additional states is not guaranteed. In addition, prior knowledge on the
plant model parameters is required in the case that some uncertainty term is involved
in the vector field of the output dynamics, as, for instance, in Reference [15].

In this study, an observer-based robust adaptive controller was formulated for sys-
tems described by second-order input–output dynamics with unknown second state and
applied to concentration tracking in a stirred chemical reactor. It was guaranteed that
the tracking error would asymptotically converge to a residual set of user-defined sizes
with the following features: (i) modeling errors and uncertain model disturbance terms
and their upper bounds are not required to be known; (ii) the effect of input saturation is
counteracted, guaranteeing that all closed loop signals are bounded; (iii) discontinuous
signals are neither used in the observer equations, nor the update laws nor the control law;
(iv) adjustment of the controller parameters is not complex; and (v) large transient values
of the tracking error are avoided by using a control signal that exhibits faster response to
changes in the output tracking error. The main contributions with respect to the current
observer-based controller designs are as follows:

- The tracking error converges to a compact set whose width is user-defined. In contrast,
in current observer-based controllers, as, for instance, in References [4,7,9,11,25],
the width of the convergence set is function of the upper bound of either the time
derivative of external disturbances, the time derivative of a state variable, a known
state or an unknown model term.

- The control law, the update laws and the observer equations involve no discontinu-
ous signals, thus avoiding problematic numerical solution and input chattering. In
contrast, signum type signals are used in either the control law in References [4,9] and
References [16–18] or the observer equations in References [4,16,26].

- The formulated control law features a fast response to changes in the tracking error,
so that it avoids excessive transient values of the tracking error, whereas the control
effort can be reduced through the controller parameters.

The robust adaptive controller is formulated on the basis of the observer equations,
using the adaptive backstepping procedure as framework for the controller design and the
filtering approximation of the DSC strategy in order to avoid the ‘explosion of complexity’.
The design of both the observer and controller are based on dead-zone-type Lyapunov
functions, whereas the convergence of the observer error and tracking error are ensured by
means of the Barbalat’s lemma. To achieve the aforementioned improved input response
and tracking performance, several modifications were incorporated in the adaptive back-
stepping and DSC procedures. In the current adaptive backstepping with DSC strategy, the
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effect of the tracking error on the second backstepping state is attenuated by filtering, which
may reduce the sensitivity to changes in the control error. In contrast, in the proposed
controller, the definition of the second backstepping state includes a new non-filtered
saturation function of the tracking error, thus providing a stronger dependence on the
tracking error, with no discontinuous signals. As the control law is defined as a function of
this second backstepping state, it also exhibits an enhanced dependence with respect to the
tracking error. The absence of discontinuous signals in the observer equations, the update
law and the control law is achieved by properly applying dead-zone Lyapunov functions.

The developed state observer provides the estimate of the unknown second state, and
it exhibits the following benefits: the observer error for the known output state converges
to a compact set whose width is user-defined; the control gain is not required to be known;
the time derivative of the model uncertainty term is not required to be known; the upper
bound of the system states is not required to be known; no discontinuous signals are used
in the observer equations, neither in the state estimation equations nor in the update law.
In addition, the advantages of the proposed observer over current extended state observers
(ESO) are as follows:

- The time derivative of the disturbance term is not required to be bounded. In con-
trast, in current ESO designs the extra system state is defined as either the distur-
bance term or a function of it, and its time derivative is assumed to be bounded (see
References [27–31]). It is convenient to avoid this restriction [2], which implies that
non-smooth disturbance terms are not allowed, neither state dependent nor time
dependent.

- The width of the convergence region of the observer error for the known state is
user-defined. In ESO designs in which the convergence region of the observer states
is determined, that width depends on the upper bound of either the time derivative
of the disturbance term that is chosen as extra system state (see References [28,31]), or
some state variable (see Reference [31]).

- Discontinuous signals are avoided, which is in contrast to some ESO designs, as, for
instance, in References [29,30].

This paper is organized as follows. The mathematical second-order model is presented
in Section 2, the observer design is in Section 3, the observer-based controller design is in
Section 4, the simulation results are in Section 5 and conclusions in are Section 6.

2. Model Description

We considered a SISO second-order nonlinear model, as it may represent many real
systems, including mechatronic, biochemical and networked systems. Due to the complex
behavior of these systems, the model may comprise unknown disturbance terms caused
by parametric uncertainty, modeling error, unmodeled parasitic dynamics and unknown
external disturbances [2,32,33]. The SISO model is as follows:

dx1

dt
= − f1aox2 + f1b + δ1a (1a)

dx2

dt
= f2o + f2c + bu + δ2a (1b)

where (x1, x2) are the system states, y = x1 is the output to be controlled, and δ1a and δ2a
are modeling errors. The bounds of the input u are determined by operational limits, and
the relationship between the constrained (u) and the unconstrained (unc) control signals is
as follows:

u =


umax i f unc > umax

unc i f unc ∈ [umin umax]
umin i f unc < umin

(2)

The following assumption are considered:

Assumption 1. The state variable x2 is bounded for input u bounded, and x1 ∈ R+, x2 ∈ R+.
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Assumption 2. The term f2o is an unknown but bounded function of x1, x2; f1b is a known
function of x1; f2c is a known function of x1 and x2. In addition, sign(b) is known, and b is known
with uncertainty.

Assumption 3. The term (− f1ao) is known with uncertainty: − f1ao = − f1a + δ f a, where f1a is
the known value of f1ao, and the uncertainty δ f a is bounded.

Assumption 4. The value of x1 is known, x2 is unknown; and u is known.

Assumption 5. The modeling errors δ1a and δ2a are unknown and bounded with unknown bounds.

Remark 1. Several systems are represented by Models (1) and (2), with x2 bounded for u bounded:
(i) a continuous reactor (CSTRs), including chemical reactors [32,33] and bioreactors [34]; (ii) the
mass-spring mechanical system used by [34]; (iii) a batch or a CSTR reactor, being x1 the base
concentration, and x2 represents the dynamics of the flow valve; this case is considered and discussed
in the numerical simulation in Section 5. The CSTRs exhibit complex nonlinear dynamics, external
disturbances, varying process conditions and unmeasured states. There are two common choices
of the manipulated input and controlled output: in one, the coolant temperature and the reactor
temperature; and in the other, the feed flow rate and the reactor composition [33]. In the case of
bioreactors, the model uncertainties are commonly caused by lack of knowledge on reaction rates,
substrates input concentration, product concentration and biomass concentration. In addition, the
coefficients of the reaction rates usually vary with time [35–38]. The mass-spring system commonly
exhibits parametric uncertainties and backlash nonlinearity. The states are the position and velocity
of the mass (x1 and x2, respectively) [39].

Remark 2. Actuator saturation is common in practice, and it has a significant effect on the
performance and stability of the control system. Indeed, it may lead to excessive growth of the
updated parameters [9,32,40].

To account for the uncertainty on f1a stated in Assumption 3, we express the term
− f1aox2 as follows:

− f1aox2 = − f1ax2 + δ f ax2 (3)

Using expression (3), we can write Model (1) as follows:

dx1

dt
= − f1ax2 + f1b + δ1 (4a)

dx2

dt
= f2c + bu + δ2b (4b)

δ1 = δ1a + δ f ax2, δ f ax2 = δ f ax2 (5a)

δ2b = δ2a + f2o (5b)

Remark 3. Models (1) and (2) can be rewritten in state-space representation:

dx
dt

= fx + Bu + δ

where
x = [x1, x2]

ᵀ, fx = [− f1aox2 + f1b, f2o + f2c]
ᵀ, B = [0, b]ᵀ, δ = [δ1a, δ2a ]

ᵀor equiva-
lently, fx = [− f1ax2 + f1b, f2c]

ᵀ, δ = [δ1, δ2b ]
ᵀ. The latter definition of fx, δ corresponds to

the arranged form (4) and (5).

Proposition 1. The error terms δ2b and δ1 are unknown and bounded.
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Proof. The error term δ2b is bounded, as concluded from the following facts: δ2a is bounded
(Assumption 5); f20 is bounded (Assumption 2); x2 is bounded (Assumption 1). Recall that
δ f a is bounded (Assumption 3), so that we have the following:

δ f a ≤ µ f a (6)

where µ f a is constant, positive and unknown. From the definition of δ f ax2 (5a) and the
bounded nature of δ f a (6) and x2 (Assumption 1), it follows that δ f ax2 ≤ µ f ax2, where µ f ax2
is constant, positive and unknown.

From the definition of δ1 (5a), the above result and the bounded nature of δ1a (As-
sumption 5), it follows that δ1 is bounded. This completes the proof.

3. Observer Design

In this section, the observer is designed to provide an estimate (x̂2) of x2, and an
estimate (x̂1) of x1, subject to bounded modeling error with unknown bound, known state
x1 and unknown state x2. This observer is later used as model for the controller design, in
Section 4, so that the controller uses the state estimates instead of the actual state values.
Another benefit of the observer is that it avoids the undesired risk of excessive increase of
updated parameters, as is commonly caused by input saturation.

The observer design is based on dead-zone Lyapunov functions, as this strategy
allows achieving convergence of the output observation error to a compact set whose
width is user-defined, with robustness to perturbation terms, while avoiding the use
of discontinuous signals. Early global stability studies based on dead-zone Lyapunov
functions are presented in References [19,41–43]; whereas recent studies are presented
in References [44–47]. The main tasks of the observer design procedure are (i) to define
the errors of state estimation (observer errors) (x1 = x̂1 − x1, x2 = x̂2 − x2) and their
dead-zone quadratic forms; (ii) to determine the time derivative of the estimation errors
and quadratic forms; and (iii) to choose the observer equations that provide the estimates
x̂1 and x̂2, such that the convergence of the estimation errors is ensured.

Theorem 1. Consider Models (1) and (2) and the observer:

dx̂1

dt
= − f1a x̂2 + f1b + g1 (7a)

dx̂2

dt
= −a2 x̂2 + bmu + f2c, (7b)

d
dt

θ̂ = Γ| fv1|ϕ

where
g1 = −ko fv1 −

1
4a2

f 2
1a fv1 − satx1 ϕT θ̂

ϕ = [| f1a|, 1]T

fv1 =


x1 − ε f or x1 > ε

0 f or x1 ∈ [−ε, ε]
x1 + ε f or x1 < −ε

satx1 =


1 f or x1 ≥ ε

1
ε x1 f or x1 ∈ (−ε, ε)
−1 f or x1 ≤ −ε

x1 = x̂1 − x1,

where x̂1 is the estimate of x1, x̂2 is the estimate of x2, and θ̂ =
[
θ̂[1] θ̂[2]

]
is the vector of updated

parameters; bm is the known value of the control gain b, Γ is a 2 × 2 diagonal matrix, whose
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diagonal entries are denoted by γa and γb; f1b and f2c are functions of Model (1). Moreover, (i)
ko, a2 and the diagonal entries of Γ are user-defined, positive and constant; (ii) the width of the
convergence region of x1, that is, ε, is user-defined, positive and constant. As a result of
this observer, (Ti) the updated parameter vector θ̂ remains bounded, despite input saturation
events; (Tii) the observer error x1 = x̂1 − x1 asymptotically converges to Ωx1 = {x1 : |x1| ≤ ε},
despite input saturation events; (Tiii) the observer error x2 = x̂2 − x2 asymptotically converges to
Ωx2, where Ωx2 =

{
x2 : min

(
δ2
a2

)
≤ x2 ≤ max

(
δ2
a2

)}
, δ2 = (bm − b)u− δ2b, despite input

saturation events.

Proof. Task 1 [Arrangement of the second model dynamics in terms of the observation
error x2 = x̂2 − x2 and an error term]. Considering the bounded nature of x2, and in order
to facilitate the design of the x2 observer, Models (5) and (6) can be rewritten as follows:

dx1

dt
= − f1ax2 + f1b + δ1 (8a)

dx2

dt
= −a2x2 + f2c + bu + δ2c (8b)

δ2c = δ2a + f2o + a2x2 (9)

where a2 is a user-defined positive constant. The error term δ2c is bounded, and this is
concluded from the following facts: (i) δ2b = δ2a + f2o is bounded, as stated in Proposition
1; and (ii) x2 is bounded (Assumption 1) and a2 is constant.

Remark 4. Observer (7) is developed on the basis of the arranged Form (8) instead of Representation
(4) or the original Model (1). Indeed, there is a great correspondence between the structure of
Observer (7) and Representation (8). In the formulation of model Form (8), the term −a2x2 was
incorporated in order to provide a stable dynamics of the estimate of x2, as is shown later in the
observer design. To this end, −a2x2 was added and subtracted, with a2 being a user-defined positive
constant, and +a2x2 was incorporated in the definition of the δ2c term.

The dynamics of the observer error x2 = x̂2 − x2 is obtained by subtracting the
dynamics of x2 (Equation (8b)) from the dynamics of x̂2 (Equation (7b)):

dx2

dt
= −a2x2 + δ2 (10)

δ2 = (bm − b)u− δ2c (11)

It can be rewritten as follows:

dx2

dt
= −a2

(
x2 −

δ2

a2

)
(12)

Task 2 [Determination of the expression for dVx2/dt]. To define the dead-zone quadratic
form Vx2 for the observation error x2, we first determine dVx2/dt, which can be expressed
as follows:

dVx2

dt
= fv2

dx2

dt
(13)

fv2 =
dVx2

dx2
(14)

Incorporating the expression of dx2/dt (Equation (12)) yields the following:

dVx2

dt
= −a2 fv2

(
x2 −

δ2

a2

)
(15)
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The disturbance term δ2/a2 is bounded, which follows from the constant nature of a2,
the definition of δ2 (11) and the following facts: (i) δ2c is bounded, as previously mentioned;
and (ii) u is saturated, according to Equation (2).

Task 3 [Definition of the gradient fv2 = dVx2/d
¯
x2 and the dead-zone quadratic form Vx2

for the observation error
¯
x2]. The term x2 − δ2/a2 appearing in Equation (15) satisfies

the following:

x2 −
δ2

a2
> 0 f or x2 > max

(
δ2

a2

)
> 0

x2 −
δ2

a2
< 0 f or x2 < min

(
δ2

a2

)
< 0

Therefore, we get the following:

sgn
(

x2 −
δ2

a2

)
= sgn(x2) f or x2 /∈

[
min

(
δ2

a2

)
, max

(
δ2

a2

)]
(16)

To obtain adequate non-positive nature of dVx2/dt in Equation (15), we need to choose
fv2 such that the term fv2(x2 − δ2/a2) satisfies the following:

fv2

(
x2 −

δ2

a2

)
> 0 f or x2 > max

(
δ2

a2

)
(17a)

fv2

(
x2 −

δ2

a2

)
> 0 f or x2 < min

(
δ2

a2

)
(17b)

fv2

(
x2 −

δ2

a2

)
= 0 f or x2 ∈

[
min

(
δ2

a2

)
, max

(
δ2

a2

)]
(17c)

fv2 is a continuos f unction o f x2 (17d)

Therefore, we choose the following:

fv2 =


x2 −max

(
δ2
a2

)
f or x2 > max

(
δ2
a2

)
> 0

0 f or x2 ∈
[
min

(
δ2
a2

)
, max

(
δ2
a2

)]
x2 −min

(
δ2
a2

)
f or x2 < min

(
δ2
a2

)
< 0

(18)

The main properties of fv2 are as follows:

Pi) fv2 is a continuous f unction o f x2 (19a)

Pii) fv2 = 0 f or x2 ∈
[

min
(

δ2

a2

)
, max

(
δ2

a2

)]
(19b)

Piii) fv2 6= 0 f or x2 /∈
[

min
(

δ2

a2

)
, max

(
δ2

a2

)]
(19c)

Piv) sgn( fv2) = sgn(x2) = sgn
(

x2 − δ2
a2

)
6= 0

f or x2 /∈
[
min

(
δ2
a2

)
, max

(
δ2
a2

)] (19d)

Pv) | fv2| ≤
∣∣∣∣x2 −

δ2

a2

∣∣∣∣ (19e)

In order to satisfy fv2 = dVx2/dx2 (14), we choose the dead-zone Lyapunov function:

Vx2 =
1
2

f 2
v2 (20)
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Some important properties of Vx2 (20) are as follows:

Vx2 > 0 f or x2 /∈
[

min
(

δ2

a2

)
, max

(
δ2

a2

)]
(21a)

Vx2 = 0 f or x2 ∈
[

min
(

δ2

a2

)
, max

(
δ2

a2

)]
(21b)

Vx2 is continuous with respect to x2 (21c)

Task 4 [Arrangement of the expression for dVx2/dt in terms of a non-positive function

of the gradient fv2=dVx2/d
¯
x2]. From the definition of fv2 (18) and properties (19b), (19d)

and (19e), it follows that we get the following:

fv2

(
x2 −

δ2

a2

)
= | fv2|

∣∣∣∣x2 −
δ2

a2

∣∣∣∣ ≥ f 2
v2 ≥ 0

Substituting into Equation (15) yields the following:

dVx2

dt
≤ −a2 f 2

v2 ≤ 0 (22)

By accounting for the definition of Vx2 (20), we have the following:

dVx2

dt
≤ −2a2Vx2 ≤ 0 (23)

Task 5 [Integration of the expression for dVx2/dt and determination of the convergence

of
¯
x2]. From Equation (23) it follows that Vx2 ≤ Vx2toe−2a2(t−to), so that fv2 converges to

zero. Further, considering the definition of fv2 (18), it follows that x2 converges asymptoti-
cally to Ωx2 =

{
x2 : min

(
δ2
a2

)
≤ x2 ≤ max

(
δ2
a2

)}
. This completes the proof of Tiii.

Task 6 [Definition of the general form for the x1 observer and the dynamics of the ob-
servation error]. We consider a general form for the x1 observer that is function of the
estimate x̂2:

dx̂1

dt
= − f1a x̂2 + f1b + g1 (24)

where the term g1 is defined later. The dynamics of x1 = x̂1 − x1 is obtained by subtracting
the dynamics of x1 (8a) from the general dynamics of x̂1 (24):

dx1

dt
= − f1ax2 + g1 − δ1 (25)

where δ1 is bounded as mentioned in Proposition 1.

Task 7 [Definition of the Lyapunov function for the observation system (Vx) and the
dead zone quadratic form for the x1 observer]. We choose the Lyapunov function for the
observation system to be as follows:

Vx = Vx1 + Vx2 (26)

where Vx2 is defined in Equation (20), and we choose the following dead-zone quadratic
form Vx1:

Vx1 =
1
2

f 2
v1 (27)

fv1 =


x1 − ε f or x1 > ε

0 f or x1 ∈ [−ε, ε]
x1 + ε f or x1 < −ε

(28)
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The main properties of Vx1 (27) are as follows:

Vx1 > 0 f or x1 /∈ [−ε, ε] (29a)

Vx1 = 0 f or x1 ∈ [−ε, ε] (29b)

Vx1 is continuous with respect to x1, and it is bounded f or x1 bounded (29c)

Task 8 [Determination of the dVx/dt expression]. Differentiating Equation (26) with re-
spect to time, yields the following:

dVx

dt
=

dVx1

dt
+

dVx2

dt
(30)

The time derivative of Vx1 (27) can be expressed as follows:

dVx1

dt
= fv1

dx1

dt
(31)

Substituting into Equation (30) yields the following:

dVx

dt
= fv1

dx1

dt
+

dVx2

dt
(32)

Substituting the expression for dx1/dt (25) and dVx2/dt (22) yields the following:

dVx

dt
≤ −a2 f 2

v2 + (− f1a) fv1x2 + fv1(g1 − δ1) (33)

Task 9 [Arrangement of the dVx/dt expression in terms of fv1=dVx1/d
¯
x1]. In Equation (33),

the term (− f1a) fv1x2 exhibits no non-positive nature, so that it must be counteracted by
non-positive terms: −a2 f 2

v2 and non-positive functions of fv1. To this end, x2 is expressed
as the addition of fv2 and an error term, and the resulting fv2 term can be counteracted by
the term −a2 f 2

v2. Let
dx2 = fv2 − x2 (34)

Using the definition of fv2 (18), we have the following:

dx2 =


−max

(
δ2
a2

)
f or x2 > max

(
δ2
a2

)
> 0

−x2 f or x2 ∈
[
min

(
δ2
a2

)
, max

(
δ2
a2

)]
−min

(
δ2
a2

)
f or x2 < min

(
δ2
a2

)
< 0

Hence,

dx2 ∈
[
−max

(
δ2

a2

)
,−min

(
δ2

a2

)]
|dx2| ≤ µδa (35)

where µδa is an unknown positive constant that satisfies the following:

µδa = max
{
−min

(
δ2

a2

)
, max

(
δ2

a2

)}
(36)

and−max
(

δ2

a2

)
< 0,−min

(
δ2

a2

)
>0

From Equation (34), the next equation follows:

x2 = fv2 − dx2 (37)
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Substituting into Equation (33) and arranging yields the following:

dVx

dt
≤ −a2 f 2

v2 + (− f1a) fv1 fv2 + fv1( f1adx2 + g1 − δ1) (38)

where

−a2 f 2
v2 − f1a fv1 fv2 =−

[√
a2 fv2 +

1
2
√

a2
f1a fv1

]2
+

(
1

4a2
f 2
1a f 2

v1

)
≤ 1

4a2
f 2
1a f 2

v1

Substituting into Equation (38) and arranging yields the following:

dVx

dt
≤ 1

4a2
f 2
1a f 2

v1 + fv1( f1adx2 + g1 − δ1)

dVx

dt
≤ fv1

(
1

4a2
f 2
1a fv1 + f1adx2 + g1 − δ1

)
dVx

dt
≤ −ko f 2

v1 + fv1

(
ko fv1 +

1
4a2

f 2
1a fv1 + g1 + f1adx2 − δ1

)
(39)

where the term −ko f 2
v1 was added and subtracted in order to achieve convergence of fv1.

Task 10 [Arrangement of the dVx/dt expression in terms of updated parameters and
updating errors]. To tackle the lack of knowledge on dx2 and δ1 appearing in Equation
(39), they are expressed as function of upper bounds, and then as function of updated
parameters and parameter updating errors. Recall the bounded nature of dx2 (Equation
(35), and the bounded nature of δ1 mentioned in Proposition 1, so that |δ1| ≤ µδb, where
µδb is unknown, positive and constant. Therefore, we get the following:

fv1 f1adx2 ≤ | fv1 f1adx2| ≤ µδa| fv1|| f1a|

fv1(−δ1) ≤ µδb| fv1|

Equivalently,
fv1 f1adx2 + f1v(−δ1) ≤ | fv1|ϕTθ, (40)

ϕ = [| f1a|, 1]T , θ = [µδa, µδb]
T (41)

Since θ is unknown, we consider an updated parameter vector θ̂, which is defined
later, and we define the parameter updating error as follows:

θ̃ = θ̂ − θ (42)

Hence, the unknown parameter vector can be expressed as θ = θ̂ − θ̃. Substituting
into Equation (40) yields the following:

fv1 f1adx2 + fv1(−δ1) ≤ | fv1|ϕT θ̂ − | fv1|ϕT θ̃ (43)

Substituting into Equation (39) yields the following:

dVx

dt
≤ −ko f 2

v1 + fv1

(
ko fv1 +

1
4a2

f 2
1a fv1 + g1

)
+ | fv1|ϕT θ̂ − | fv1|ϕT θ̃ (44)

which can be expressed as follows:

dVx

dt
≤ −ko f 2

v1 + fv1

(
ko fv1 +

1
4a2

f 2
1a fv1 + g1 + sign( fv1)ϕT θ̂

)
− | fv1|ϕT θ̃
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Task 11 [Definition of the g1 term of the x1 observer]. The above expression leads to the
presence of the discontinuous signal sign( fv1) in the definition of g1, and consequently in
the observer equation dx̂1/dt. To remedy this, we notice from the definition of fv1 (28) that
we get the following:

| fv1| = fv1satx1 (45)

satx1 =


1 f or x1 ≥ ε

1
ε x1 f or x1 ∈ (−ε, ε)
−1 f or x1 ≤ −ε

(46)

Using this expression in Equation (43) yields the following:

fv1 f1adx2 + fv1(−δ1) ≤ fv1satx1 ϕT θ̂ − | fv1|ϕT θ̃

Substituting into Equation (44) yields the following:

dVx

dt
≤ −ko f 2

v1 + fv1

(
ko fv1 +

1
4a2

f 2
1a fv1 + g1 + satx1 ϕT θ̂

)
− | fv1|ϕT θ̃ (47)

Therefore, we choose the following:

g1 = −ko fv1 −
1

4a2
f 2
1a fv1 − satx1 ϕT θ̂ (48)

Substituting into Equation (47) yields the following:

dVx

dt
≤ −ko f 2

v1 − | fv1|ϕT θ̃ (49)

Task 12 [Definition of the overall Lyapunov function, the quadratic form for the pa-
rameter updating error, and the update law]. In view of Equation (49), we define the
overall Lyapunov function and the quadratic form for the parameter updating error θ̃ (42)
as follows:

V = Vx + Vθ , (50)

Vθ =
1
2

θ̃Γ−1θ̃ (51)

The time derivative of V is as follows:

dV
dt

=
dVx

dt
+

dVθ

dt
(52)

Differentiating Vθ (51) with respect to time, and then incorporating dVθ/dt and dVx/dt
(Equation (49)) into Equation (52) yields the following:

dV
dt
≤ −ko f 2

v1 + θ̃ᵀ

(
Γ−1 dθ̂

dt
− | fv1|ϕ

)
(53)

We choose the update law:
d
dt

θ̂ = Γ| fv1|ϕ (54)

where Γ is a 2× 2 diagonal matrix whose diagonal entries are user-defined, positive and
constant. Substituting into Equation (53) yields the following:

dV
dt
≤ −ko f 2

v1 (55)
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Task 13 [Integration of the dV/dt expression and determination of the convergence of
x1]. Arranging and integrating Equation (55) yields the following:

V + ko

∫ t

to
f 2
v1dt ≤ Vto (56)

Therefore, V ∈ L∞, and in view of definitions of V (Equation (50)), Vθ (Equation (51))
and θ̃ (Equation (42)), one obtains Vθ ∈ L∞, θ̃ ∈ L∞, θ̂ ∈ L∞, so that excessive parameter
increase is avoided. This completes the proof of Ti.

In addition, from Equation (56), it follows that (i) V ∈ L∞ implies Vx1 ∈ L∞, and,
consequently, x1 ∈ L∞ and f 2

v1 ∈ L∞; (ii) f 2
v1 ∈ L1. Considering the properties f 2

v1 ∈ L∞
and f 2

v1 ∈ L1 and applying the Barbalat’s lemma [48], we yield the following:

lim
t→∞

f 2
v1 = 0 (57)

Further, considering the definition of fv1 (28), we conclude that x1 converges asymp-
totically to Ωx1 = {x1 : |x1| ≤ ε}. This completes the proof of Tii.

4. Controller Design

In this section, the control law is formulated for the input signal (u), so as to achieve
tracking of the estimate x̂1. The control law avoids the use of discontinuous signals and
exhibits a fast response to changes in the tracking error. The observer formulated in
Section 3 is used instead of the plant model, in order to cope with the lack of knowledge
on x2.

Dead-zone Lyapunov functions are used in the controller design in order to achieve
convergence of the tracking error to a compact set whose width is user-defined, with
robustness against the error terms (including the filtering error) while avoiding the use of
discontinuous signals. The backstepping design is used as basic control framework, but
several modifications are incorporated: (i) dead-zone quadratic forms are used instead
of common quadratic forms; (ii) the filtering approximation of the DSC strategy is used
in order to avoid the ‘explosion of complexity’, but we propose a different accounting
for the effect of the approximation error in the convergence analysis; and (iii) the time
derivative of the quadratic forms and the definition of the new states are modified so that
the formulated control law not only achieves asymptotic convergence of the tracking error,
but also features a fast response to changes in the tracking error, while the control effort
can be reduced by means of the user-defined controller parameters.

Theorem 2. Consider Models (1) and (2), the observer given by Theorem 1 and the control law

unc =
1

bm

(
−kc2 f 2

1ae2 + a2 x̂2 − f2c +
dx2d f

dt

)
where

e1 = x̂1 − yd

yd =
am

p + am

am

p + am
r

e2 = x̂2 − x2d f

x2d f = −sate1T1 f

sate1 =

{
e1
ε

(
2− |e1|

ε

)
f or e1 ∈ (−ε, ε)

sgn(e1) otherwise

T1 f is given by
dT1 f

dt
=

1
τT1

(
−T1 f + T1

)
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T1 =
1

(− f1a)

∣∣∣∣ f1b + kc1e1 −
.
yd − ko fv1 +

(−1)
4a2

f 2
1a fv1 − satx1| f1a|θ̂[1] − satx1θ̂[2]

∣∣∣∣+ k f

kc1kc2 >

(
1
4

)
; k f > ε > 0;

dx2d f

dt
= sate1

dT1 f

dt
− T1 f

dsate1

de1

(
dx̂1

dt
− dyd

dt

)
dsate1

de1
=

{
2
ε

(
1− |e1|

ε

)
f or e1 ∈ (−ε, ε)

0 otherwise

where yd is the desired output, r is the command signal, f1b and f2c are functions of Model (1), and p
= d/dt is the differential operator (see References [19,49]): (i) x̂1, x̂2, fv1, satx1, θ̂ =

[
θ̂[1] θ̂[2]

]
and

dx̂1/dt are signals of the observer, and ko is an observer parameter (see Theorem 1); (ii) am is
the parameter of the reference model, it is user-defined, positive and constant; (iii) kc1 and kc2
are user-defined positive constants; (iv) τT1 is the time constant of the signal T1 f ; (v) k f is the
gain of the term for robustness against the error caused by the difference T1 − T1 f . As a result of
the observer given by Theorem 1 and this controller, the tracking error e1 = x̂1 − yd converges
asymptotically to Ωe1 = {e1 : |e1| ≤ ε}.

Proof. Task 14 [Definition of the dynamics of the tracking error]. Recall the observer
Equations (7a) and (7b). We define the tracking error as follows:

e1 = x̂1 − yd (58)

Differentiating with respect to time yields the following:

de1

dt
=

dx̂1

dt
− dyd

dt

Incorporating the expressions for dx̂1/dt (Equation (7a)) yields the following:

de1

dt
= − f1a x̂2 + f1b + (−1)

1
4a2

f 2
1a fv1 − satx1| f1a| θ̂[1] − satx1θ̂[2] − ko fv1 −

.
yd (59)

Task 15 [Definition of the dead-zone quadratic form for the tracking error]. We need to
prove the convergence of the tracking error e1 to the compact set Ωe1 = {e1 : |e1| ≤ ε}. To
this end, we define the quadratic form for e1 as follows:

Ve1 =
1
2

f 2
e1 (60)

fe1 =


e1 − ε f or e1 ≥ ε
0 f or e1 ∈ (−ε, ε)
e1 + ε f or e1 ≤ −ε

(61)

The main properties of Ve1 (60) are as follows:

Ve1 = 0 f or e1 ∈ [−ε, ε] (62a)

Ve1 > 0 f or e1 /∈ [−ε, ε] (62b)

Ve1 is continuous with respect to e1, and it is bounded f or e1 bounded (62c)

The above properties and a stable dynamics of Ve1 allow us to prove the convergence
of e1 to the compact set Ωe1 = {e1 : |e1| ≤ ε}.
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Task 16 [Determination of dVe1/dt, arrangement of dVe1/dt in terms of non-positive func-
tions of fe1 and definition of the second state e2]. The time derivative of Ve1 (60) can be
expressed as follows:

dVe1

dt
= fe1

de1

dt
Incorporating the expression for de1/dt (Equation (59)) yields the following:

dVe1

dt
= −kc1e1 fe1

+ fe1

(
− f1am x̂2 + f1b +

(
kc1e1 −

.
yd
)
+ (−1)ko fv1 +

(−1)
4a2

f 2
1am fv1 − satx1| f1am| θ̂[1] − satx1 θ̂[2]

)
(63)

where the term kc1e1 fe1 was subtracted and added in order to provide convergence of e1
towards the expected compact set. Some properties of fe1 (61) are as follows:

Pi) sgn( fe1) = sgn(e1) 6= 0 f or e1 /∈ [−ε, ε] (64a)

Pii)| fe1| < |e1| f or e1 /∈ [−ε, ε] (64b)

Piii) fe1 = 0 f or e1 ∈ [−ε, ε] (64c)

Therefore, we have the following:

e1 fe1 = |e1| | fe1| > f 2
e1 f or e1 /∈ [−ε, ε]

e1 fe1 = 0 = f 2
e1 f or e1 ∈ [−ε, ε]

Combining these properties yields e1 fe1 ≥ f 2
e1. Substituting into Equation (63) yields

the following:
dVe1

dt
≤ −kc1 f 2

e1

dVe1

dt
≤ −kc1 f 2

e1 + fe1

(
− f1a x̂2 + f1b +

(
kc1e1 −

.
yd
)
+ (−1)ko fv1 +

(−1)
4a2

f 2
1a fv1 − satx1| f1a| θ̂[1] − satx1 θ̂[2]

)
which can be rewritten as follows:

dVe1

dt
≤ −kc1 f 2

e1 − k f (− f1a)| fe1|

+ fe1(− f1a)

x̂2 +
f1b +

(
kc1e1 −

.
yd
)
+ (−1)ko fv1 +

(−1)
4a2

f 2
1a fv1 − satx1| f1a| θ̂[1] − satx1 θ̂[2]

(− f1a)
+ k f sign( fe1)

 (65)

where the term −k f (− f1a)| fe1| was added and subtracted in order to provide robustness
against an error term that will arise later as a consequence of the filtering approximation.
In order to provide high sensitivity with respect to e1, we take the absolute value of the
term that is added to x̂2:

dVe1

dt
≤ −kc1 f 2

e1 − k f (− f1a)| fe1|+ fe1(− f1a)(x̂2 + sign( fe1)T1) (66)

T1 =

∣∣∣ f1b +
(
kc1e1 −

.
yd
)
+ (−1)ko fv1 +

(−1)
4a2

f 2
1a fv1 − satx1| f1a| θ̂[1] − satx1 θ̂[2]

∣∣∣
(− f1a)

+ k f (67)
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However, this expression would lead to a e2 definition involving the discontinuous
signal sign( fe1), which would hamper the determination of de2/dt. To remedy this, from
the definition of fe1 (61), we determine the following:

| fe1| = fe1sate1 (68)

with

sate1 =

{
e1
ε

(
2− |e1|

ε

)
f or e1 ∈ (−ε, ε)

sgn(e1) otherwise
(69)

dsate1

de1
=

{
2
ε

(
1− |e1|

ε

)
f or e1 ∈ (−ε, ε)

0 otherwise
(70)

Therefore, Equation (66) can be rewritten as follows:

dVe1

dt
≤ −kc1 f 2

e1 − k f (− f1a)| fe1|+ fe1(− f1a)(x̂2 − x2d) (71)

x2d = −sate1T1 (72)

If e2 were defined as e2 = x̂2− x2d = x̂2 + sate1T1, the term dT1/dt in its time derivative
would involve undesired ‘explosion of terms’. To avoid this effect, the DSC strategy
involves the use of a filtered signal in the definition of e2 [25,50]. Then we propose a
definition of e2 with a filtered T1, denoted as T1 f .

dVe1

dt
≤ −kc1 f 2

e1 − k f (− f1a)| fe1|+ fe1(− f1a)(e2 + y2) (73)

where
e2 = x̂2 − x2d f (74)

x2d f = −sate1T1 f (75)

and T1 f is given by the following:

dT1 f

dt
=

1
τT1

(
−T1 f + T1

)
(76)

where y2 is the error caused by the difference T1 − T1 f . In the current DSC strategy, it
is assumed that the time derivative of the input signal of the filter is bounded, see [25].
In the case of filter given in Equation (76), that assumption would be dT1/dt ∈ L∞.
Instead, we consider T1 ∈ L∞. Therefore, from Equation (76), it follows that T1 f ∈ L∞
Consequently, (T1 − T1 f ) ∈ L∞, so that y2 ∈ L∞, that is, y2 ≤ µ f , where µ f is a positive
constant. Therefore, Equation (73) can be rewritten as follows:

dVe1

dt
≤ −kc1 f 2

e1 − k f (− f1a)| fe1|+ fe1(− f1a)e2 + µ f (− f1a)| fe1| (77)

Arranging, yields the following:

dVe1

dt
≤ −k f |− f1a|| fe1|+ µ f |− f1a|| fe1| − kc1 f 2

e1 + fe1(− f1a)e2 (78)

If k f is chosen such that k f ≥ µ f > 0, then −k f |− f1a|| fe1|+ µ f |− f1a|| fe1| ≤ 0.

Task 17 [Determination of the dynamics of the state e2]. Differentiating e2 (Equation (74))
with respect to time yields the following:

de2

dt
=

dx̂2

dt
−

dx2d f

dt
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Substituting expression for dx̂2/dt (Equation (7b)) and differentiating x2d f (75) with
respect to time yields the following:

de2

dt
= −a2 x̂2 + bmu + f2c −

dx2d f

dt
(79)

where
dx2d f

dt
= (−1)

(
sate1

dT1 f

dt
+ T1 f

dsate1

de1

(
dx̂1

dt
− dyd

dt

))
(80)

and the expression dsate1/de1 is defined in Equation (70).

Remark 5. To obtain a control law with high sensitivity to the tracking error e1 = x̂1 − yd, several
modifications are performed in the arrangement of the dVe1/dt expression and the definition of e2,
from Equation (66) to Equation (78), being the main task the undertaking of absolute value to the
term that is added to the x̂2 term (see Equation (66)). The resulting definition of the state e2 is highly
sensitive to the error e1 = x̂1 − yd, as follows: (i) e2 (74) can be expressed as e2 = x̂2 + sate1T1 f ;
and (ii) T1 is positive, so that T1 f is positive provided T1 f |to ≥ 0. The above property implies that
sign(sate1T1 f ) = sign(e1). As a consequence, e2 is straightforwardly influenced by sign(e1), via
the sate1 term.

Task 18 [Definition of the dead-zone Lyapunov function Ve2 for the state e2, determina-
tion of its time derivative and definition of the control law]. As we need to obtain the
convergence of the state e2 to Ωe2 = {e2 : |e2| ≤ ε}, we choose the dead-zone Lyapunov-like
function for the state e2 (74):

Ve2 =
1
2

f 2
e2 (81)

where

fe2 =


e2 − ε f or e2 ≥ ε
0 f or e2 ∈ (−ε, ε)
e2 + ε f or e2 ≤ −ε

(82)

The main properties of Ve2 are as follows:

Ve2 = 0 f or e2 ∈ [−ε, ε] (83a)

Ve2 > 0 f or e2 /∈ [−ε, ε] (83b)

Ve2 is continuous with respect to e2, and it is bounded f or e2 bounded (83c)

Differentiating Ve2 (Equation (81)) with respect to time yields the following:

dVe2

dt
= fe2

de2

dt

Incorporating the expression for de2/dt (Equation (79)) and arranging yields the
following:

dVe2

dt
= −kc2 f 2

1a fe2e2 + fe2

(
kc2 f 2

1ae2 − a2 x̂2 + bmu + f2c −
dx2d f

dt

)
(84)

To counteract the effect of the term fe2

(
kc2 f 2

1ae2 − a2 x̂2 + f2c −
dx2d f

dt

)
, we choose the

control law for unc:

unc =
1

bm

(
−kc2 f 2

1ae2 + a2 x̂2 − f2c +
dx2d f

dt

)
(85)
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Considering moments of no input saturation (u = unc), substituting (85) into Equation
(84) yields the following:

dVe2

dt
= −kc2 f 2

1a fe2e2 (86)

Task 19 [Determination of the expression for dVe1/dt+dVe2/dt, and arrangement in terms
of a non-positive function of fe1]. Adding expressions for dVe1/dt (78) and dVe2/dt (86)
yields the following:

dVe1
dt + dVe2

dt ≤ −k f |− f1a|| fe1|+ µ f |− f1a|| fe1| − kc1(β1 + β2) f 2
e1 + fe1(− f1a)e2

−kc2 f 2
1a fe2e2

(87)

where the term fe1(− f1a)e2 exhibits no non-positive nature, so that it must be counteracted
by the non-positive terms:

− k f |− f1a|| fe1| − kc1(β1 + β2) f 2
e1 − kc2 f 2

1a fe2e2

Nevertheless, in the term fe1(− f1a)e2, the signal e2 hampers the mentioned counter-
action, whereas it would be easily achieved with the signal fe2 instead of e2. Thus, e2 is
expressed as the addition of fe2 and an error term at what follows. From the definition of
fe2 (82), we move to the following:

fe2 = e2 + de2 (88)

de2 =


−ε f or e2 ≥ ε

−e2 f or e2 ∈ (−ε, ε)
ε f or e2 ≤ −ε

Therefore, we get the following:

e2 = fe2 − de2, |de2| ≤ ε (89)

In view of expression (89), the term fe1(− f1a)e2 can be rewritten as fe1(− f1a)e2 =
fe1(− f1a) fe2 + fe1(− f1a)(−de2). Hence, fe1(− f1a)e2 ≤ fe1(− f1a) fe2 + ε| fe1| | f1a|. Therefore,
the term −k f |− f1a|| fe1|+ µ f |− f1a|| fe1|+ fe1(− f1a)e2 appearing in Equation (87) leads to
the following:

− k f |− f1a|| fe1|+ µ f |− f1a|| fe1|+ fe1(− f1am)e2 ≤ −
(

k f − µ f − ε
)
| f1a|| fe1|+ (− f1a) fe1 fe2

(90)
If k f is chosen such that k f ≥ µ f + ε ≥ ε > 0, then −

(
k f − µ f − ε

)
| f1a|| fe1| ≤ 0,

and consequently Equation (90) leads to −k f |− f1a|| fe1|+ µ f |− f1a|| fe1|+ fe1(− f1am)e2 ≤
(− f1a) fe1 fe2. Combining this expression with Equation (87) leads to the following calculation:

dVe1

dt
+

dVe2

dt
≤ −kc1(β1 + β2) f 2

e1 + (− f1a) fe1 fe2 − kc2 f 2
1a fe2e2 (91)

Some properties of fe2 (82) are as follows:

Pi) sgn( fe2) = sgn(e2) 6= 0 f or e2 /∈ [−ε, ε] (92a)

Pii)| fe2| < |e2| f or e2 /∈ [−ε, ε] (92b)

Piii) fe2 = 0 f or e2 ∈ [−ε, ε] (92c)

Therefore, we have the following:

e2 fe2 = |e2| | fe2| > f 2
e2 f or e2 /∈ [−ε, ε]
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e2 fe2 = 0 = f 2
e2 f or e2 ∈ [−ε, ε]

Combining these properties, yields e2 fe2 ≥ f 2
e2. Therefore, −kc2 f 2

1a fe2e2 ≤ −kc2 f 2
1a f 2

e2.
Substituting this into Equation (91) yields the following

dVe1

dt
+

dVe2

dt
≤ −kc1(β1 + β2) f 2

e1 + (− f1a) fe1 fe2 − kc2 f 2
1a f 2

e2 (93)

where β1 and β2 are user-defined positive constants that satisfy the following:

β1 + β2 = 1, β1 =∈ (0, 1), β2 =∈ (0, 1) (94)

Equation (93) can be arranged as follows:

dVe1

dt
+

dVe2

dt
≤ −kc1β1 f 2

e1

+ (−1)kc1β2

[
f 2
e1 + 2 fe1

(
1

2kc1β2
f1a fe2

)
+ 4kc1kc2β2

(
f1a fe2

2kc1β2

)2
]

(95)

If kc1 and kc2 are chosen, we get the following:

kc1kc2 ≥
1
4

1
β2

(96)

Then 4kc1kc2β2 ≥ 1 and Equation (95) lead to the following:

dVe1

dt
+

dVe2

dt
≤ −kc1β1 f 2

e1 + (−1)kc1β2

[
fe1 +

1
2kc1β2

f1a fe2

]2
≤ −kc1β1 f 2

e1 ≤ 0 (97)

Task 20. [Definition of the overall Lyapunov function V, integration of the dV/dt expres-
sion, and determination of the convergence of e1]. Arranging and integrating Equation
(97) yields the following:

Ve1 + Ve2 + kc1β1

∫ t

to
f 2
e1dt ≤ Ve1|to + Ve2|to

where Ve1|to, Ve2|to are Ve1 (60), Ve2 (81) at time to. From the above expression, it follows that

Ve1 ≤ Ve1|to + Ve2|to; Ve2 ≤ Ve1|to + Ve2|to; kc1β1

∫ t

to
f 2
e1dt ≤ Ve1|to + Ve2|to

Therefore, fe1 converges asymptotically to zero, and the definition of fe1 (61) implies
that e1 = x̂1 − yd converges asymptotically to Ωe1, Ωe1 = {e1 : |e1| ≤ ε}, for moments of
no input saturation. This completes the proof.

Remark 6. The formulated control law (85) is highly sensitive to the error e1 = x̂1 − yd, as it
depends on e2, and e2 is highly sensitive to e1, according to the e2 definition (74), as discussed in
Remark 5.

Remark 7. The observer and controller equations use saturation instead of discontinuous functions,
whereas the asymptotic convergence of the tracking error e1 = x̂1 − yd to a compact set of user-
defined width is ensured (see Theorems 1 and 2). To this end, dead-zone Lyapunov functions were
properly defined and applied.

Remark 8. The effect of the error resulting from the filtering-based approximation, that is, y2 (77),
is tackled by an additional robustness term, −k f |− f1a|| fe1|, appearing in Equation (65), so that
the width of the convergence region Ωe1 = {e1 : |e1| ≤ ε} is not affected by such error.
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Remark 9. The undesired risk of excessive increase of updated parameters caused by input satu-
ration is tackled by developing the controller on the basis of the observer equations instead of the
system model.

Remark 10. In the choice of x2d f (Equation (75)), using a current saturation function for sate

would lead to undefined values of dsate/de and
.
x2d, due to the fact that a current sate function

exhibits undefined values of dsate1/de1 at the transition points between the linear increasing and
the horizontal segments, that is, at e1 = +ε and e1 = −ε. To remedy this, we have used the smooth
modification (69), which leads to well-defined values of dsate1/de1.

Remark 11. A distinctive feature of the controller design is that it takes into account the observer
errors x1 and x2; that is, fv1 6= 0 and fv2 6= 0. To this end, the backstepping procedure was used as
control framework for the controller design.

5. Numerical Simulation

Recall that the formulated observer is as follows:

dx̂1

dt
= − f1a x̂2 + f1b + g1

dx̂2

dt
= −a2 x̂2 + bmu + f2c,

d
dt

θ̂ = Γ| fv1|ϕ

where
g1 = −ko fv1 −

1
4a2

f 2
1a fv1 − satx1 ϕT θ̂

ϕ = [| f1a|, 1]T

fv1 =


x1 − ε f or x1 > ε

0 f or x1 ∈ [−ε, ε]
x1 + ε f or x1 < −ε

satx1 =


1 f or x1 ≥ ε

1
ε x1 f or x1 ∈ (−ε, ε)
−1 f or x1 ≤ −ε

x1 = x̂1 − x1,

where x̂1 is the estimate of x1, x̂2 is the estimate of x2, and θ̂ =
[
θ̂[1] θ̂[2]

]
is the vector of

updated parameters; bm is the known value of the control gain b, Γ is a 2× 2 diagonal
matrix, whose diagonal entries are denoted by γa and γb; f1b and f2c are functions of
Model (1). Moreover, (i) ko and a2 and the diagonal entries of Γ are user-defined, positive
and constant; and (ii) the width of the convergence region of x1; that is, ε, is user-defined,
positive and constant.

Recall that the formulated controller is as follows:

unc =
1

bm

(
−kc2 f 2

1ae2 + a2 x̂2 − f2c +
dx2d f

dt

)
where

e1 = x̂1 − yd

yd =
am

p + am

am

p + am
r

e2 = x̂2 − x2d f

x2d f = −sate1T1 f



Computation 2021, 9, 82 21 of 28

sate1 =

{
e1
ε

(
2− |e1|

ε

)
f or e1 ∈ (−ε, ε)

sgn(e1) otherwise

T1 f is given by
dT1 f

dt
=

1
τT1

(
−T1 f + T1

)
T1 =

1
(− f1a)

∣∣∣∣ f1b + kc1e1 −
.
yd − ko fv1 +

(−1)
4a2

f 2
1a fv1 − satx1| f1a|θ̂[1] − satx1θ̂[2]

∣∣∣∣+ k f

kc1kc2 >

(
1
4

)
; k f > ε > 0;

dx2d f

dt
= sate1

dT1 f

dt
− T1 f

dsate1

de1

(
dx̂1

dt
− dyd

dt

)
dsate1

de1
=

{
2
ε

(
1− |e1|

ε

)
f or e1 ∈ (−ε, ε)

0 otherwise

where yd is the desired output, r is the command signal, f1b and f2c are functions of
Model (1), and p = d/dt is the differential operator (see References [19,49]. Moreover, (i) x̂1,
x̂2, fv1, satx1, θ̂ =

[
θ̂[1] θ̂[2]

]
and dx̂1/dt are signals of the observer, and ko is an observer

parameter (see Theorem 1); (ii) am is the parameter of the reference model, it is user-defined,
positive and constant; (iii) kc1 and kc2 are user-defined positive constants; (iv) τT1 is the
time constant of the signal T1 f ; and (v) k f is the gain of the term for robustness against the
error caused by the difference T1 − T1 f .

The effectiveness of the proposed observed-based controller is illustrated through
simulation for control of base concentration in a batch reactor, with manipulation of the
base flowrate. The batch reactor consists of a stirred tank of liquid volume (v) and base
concentration, Cb, where a base flowrate (Qb f ) with concentration (Cbi) is added, but there
are no other inflows or outflows, and the valve for base addition exhibits a linear input–
output dynamics, with Qb being the base flowrate calculated by the controller and Qb f the
actual value of the flowrate. The base concentration (Cb) is controlled by manipulation of
the flowrate Qb, with Qb f being unknown (see Figure 1).
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Figure 1. Schematic diagram of the system.

The base concentration dynamics is based on mass balance on the tank (see Tan et al., 2005):

dCb
dt

=
1
v
(Cbi − Cb)Qb f + δ1a (98a)

dv
dt

= Qb f (98b)
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The valve dynamics describes the actual value of the flowrate (Qb f ) as function of the
base flowrate calculated by the controller (Qb) [51]:

dQb f

dt
= − 1

τv
Qb f +

1
τv

Qb + δ2b (98c)

where τv is the time constant of the valve dynamics. In addition, δ1a and δ2b are modeling
errors, the volume is positive (v > 0), Cbi is bounded and the τv is constant. This model
corresponds to Model (1):

x1 = Cb, x2 = Qb f , u = Qb, b =
1
τv

, f1ao = −
1
v
(Cbi − Cb); f2o = −

1
τv

x2; f1b = 0; f2c = 0 (99)

Moreover, the known value of b is bm = b. From the valve dynamics (98c) and the
bounded nature of flow Qb, it follows that Qb f is bounded, so that Assumption 1 is fulfilled.
The uncertainty on the knowledge of f1a0 is due to the uncertainty on the values of Cbi and v:

f1a = −
1

vm
(Cim − x1) (100)

where f1a is the known value of f1a0, vm is the known value of the volume v, and Cim is the
known value of Cbi. The values (Cim, vm) satisfy: vm > 0, Cim ∈ L∞. The uncertainty of f1a
is as follows:

δ f a = δIv(Cbi − Cb) +
1
v

δcin (101a)

δIv =
1
v
− 1

vm
(101b)

δcin = Cbi − Cim (101c)

Recall that v > 0, vm > 0, Cbi and Cim are bounded. Therefore, it follows from
Equations (101b) and (101c) that δIv and δcin are bounded, and consequently δ f a (101a)
is bounded:

δ f a ≤ µ f a; µ f a = max{δIv}max{Cbi}+
1

min{v}max{δcin}

where µ f a is constant, positive and unknown, so that the bounded nature of δ f a considered
in Assumption 3 is satisfied. From the valve dynamics (98c) and the bounded nature of Q,
it follows that we achieve the following:

Qb f ≤ umax for Qb f

∣∣∣
to
≤ umax

The equations of the formulated observer and controller are stated in Theorems 1 and 2,
whereas the plant model terms are given by Equations (99) and (100). From Equation (98b),
if follows that v ≈ v|to if Qb f is small; thus, we consider this approximation. The values of
the model parameters are τv = 0.1 min, umax = 0.2 L/min umin = 0 L/min and v|to = 2 L:

Cbi = Cbi + AcbiCbisin
(

2π

τcbi
t
)

, τcbi = 1min, Cbi = 3 mol/L

cim = Cbi; vm = v

Two different simulation cases are considered:

- In the first case, the command signal, r, is piecewise constant, the system is in open
loop for t ∈ [0 3] min and we have the following:

Acbi = 0.05; x1|to = 0.005; u|t≤3 min = 0.005 (open loop);
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r =
{

0.01 f or t ∈ (3 4.5) min
0.013 f or t > 4.5 min

1. In the second case, the command signal, r, is slowly time varying (its definition is
discussed in Appendix A), the system is in open loop for t ∈ [0 2] min and we have
the following:

Acbi = 0.08; x1|to = 0; u|t≤2 min = 0.0 (open loop);

The chosen values for the observer and controller parameters are shown in Table 1.
The main differences between the first and second simulation cases are as follows: (i) in
the first case, the command signal, r, is piecewise constant, whereas, in the second case,
it is slowly time varying; (ii) in the first case, the width of the uncertainty on the influent
base concentration Acbi is 0.05, whereas, in the second case, it is 0.08, what implies a higher
uncertainty on Cbi in the second case; and (iii) the values of the observer parameter, k0,
and the controller parameter, k f , are higher in the second case, whereas the controller
parameters kc1 and kc2 are higher in the first case, allowing us to illustrate that the used
parameter values are proper for obtaining convergence of the tracking error.

Table 1. Chosen parameter values for the observer and controller.

Case 1 Case 2

Observer ε = 0.001; k0 = 0.12; γa = 1; γb = 1. ε = 0.003; k0 = 0.2; γa = 1; γb = 1.

Controller kc1 = 0.0009; kc2 = 1.0;
τT1 = 0.001; k f = 0.001.

kc1 = 0.00005; kc2 = 0.4;
τT1 = 0.001; k f = 0.0031.

The first case observer simulation case shows that (Figure 2) (i) the estimate x̂1
tracks x1 (Figure 2a), (ii) the observer error x1 = x̂1 − x1 remains in the compact set
Ωx1 = {x1 : |x1| ≤ ε} (Figure 2b) and (iii) the estimate x̂2 tracks x2 (Figure 2c). In addition,
the estimated parameter, θ̂, remains bounded with no excessive increase (data not shown).Computation 2021, 9, 82  25  of  30 
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Figure 2. Observer simulations for the first case. (a) Time course of the state x1 and estimated state x̂1.
(b) Time course of the observation error x1 = x̂1 − x1. (c) Time course of the state x2 and estimated
state x̂2. (d) Time course of the observation error x2 = x̂2 − x2.
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The first case simulations of the controller show that (Figure 3) (i) x̂1 effectively
tracks yd (Figure 3a,b), (ii) the tracking error e1 = x̂1 − yd remains in the compact set
Ωe1 = {e1 : |e1| ≤ ε} (Figure 3c,d) and (iii) there is a fast response of the control input to
changes in the error e1 (Figure 3e,f).
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Figure 3. Controller simulations for the first case. (a) Time course of the estimated state x̂1 and desired tracking trajectory
yd. (b) Detail of time course of x̂1 and yd. (c) Time course of the tracking error e1 = x̂1 − yd and e2 = x̂2 − x2d. (d) Detail of
time course of e1, e2. (e) Time course of the unsaturated and saturated signals unc, u. (f) Detail of time course of signals
unc, u. (g) Time course of x1 − yd.

The second case simulations of the controller show that (Figure 4) (i) x̂1 effectively
tracks yd (Figure 4a,b), (ii) the tracking error e1 = x̂1 − yd remains in the compact set
Ωe1 = {e1 : |e1| ≤ ε} (Figure 4c,d) and (iii) there is a fast response of the control input to
changes in the error e1 (Figure 4e,f).

The observer error x1 = x̂1 − x1 remains inside Ωx1, so that fv1 remains equal to zero,
for both the first and second cases (Figure 2b). Due to this fact and the dependence of
the update law (55) on fv1, the updated parameter vector θ̂ remains constant and equal
to its initial value (data not shown). The main features of the tracking error e1 = x̂1 − yd
are as follows: (i) it remains inside Ωe1 for both the first and second cases (Figure 3c,d
and Figure 4c,d), so that undesired large transient values are avoided; (ii) it is lower in the
second case, which indicates that the controller parameter, k f , has a significant effect on
the value of the control input signal, and consequently on the tracking performance. Since
the observer error, x1, and the tracking error, e1, remain each inside a compact set whose
width is ε, the error x1 − yd (Figures 3g and 4g) remains inside a compact set of small size.
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The control effort remains relatively low, with only a few moments of input sat-
uration (Figures 3e,f and 4e,f). This is achieved by using no overly large controller
parameters, kc1, kc2 and k f . The control input achieves noticeable changes of the system
output in 0.3 min (Figure 2a,c), but this depends on the input–output dynamics of the
system and the control law.

6. Conclusions

In this paper, we proposed a robust observer-based adaptive controller for systems
described by second-order input–output dynamics with unknown second state, and it
was applied to concentration tracking in a chemical reactor. The controller design was
improved so as to achieve faster response of the control input to the output tracking
error, while providing robustness against disturbance terms or modeling errors, avoiding
input chattering. The improved sensitivity of the control input is provided through a new
saturation function of the output tracking error. To this end, several modifications were
incorporated in the backstepping method, including a different definition of the second
backstepping state. The advantages over current observer based controllers for second-
order models are (i) discontinuous signals are avoided in the control law, the update law
and the observer equations; (ii) the width of the convergence region of the tracking error
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does not depend on upper bounds of either model terms, state variables or disturbances;
and (iii) the control law exhibits an enhanced speed of response to changes in the tracking
error, whereas the control effort can be reduced through the controller parameters. The
simulations show the aforementioned advantages of the formulated controller, including (i)
fast convergence of the output to the desired value; (ii) fast response of the input signal to
changes in the output error; (iii) continuous behavior of the input signal, with no chattering;
and (iv) no excessive control effort.
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Appendix A Definition of the Reference Trajectory for the Second Simulation Case

We consider the pH control scheme of Reference [52], which comprises (i) calculation
of the base concentration required (r = Cbd) to obtain the target pH, in presence of acid,
by using the hydrogen model that relates [H+], acid and base concentrations; and (ii)
manipulation of the inlet base flow (Cbin) in order to drive the base concentration (y = Cb)
to the required value (Cbd). To this end, we use the pH definition (pH = −log10(H+))
where H+ is the hydrogen ion concentration; and the hydrogen relationship obtained by
combining the equations for charge balance and ionic dissociation of water, acid and buffer
species [51]:

H+ + Bu M0 = Kw
1

H+
+ Ka

1
Ka + H+

Atot +
(Kb1H+ + Kb1Kb2)

(H+)2 + Kb1H+ + Kb1Kb2
Bu

where Atot is the total acid concentration; Bu is the total buffer concentration; Bu M0 is the
initial concentration of the buffer salt Bu M; Kw, Ka, Kb1, and Kb2 are constants; and we
assume that Bu is constant. We consider a target pH of 6.1, and we asume some trajectory
of Atot in the range 0.002 to 0.012 mol/L.
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