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How to choose suppliers scientifically is an important part of strategic decision-making management of enterprises. Expert
evaluation is subjective and uncontrollable; sometimes, there exists biased evaluation, which will lead to controversial or unfair
results in supplier selection. To tackle this problem, this paper proposes a novel method that employsmachine learning to learn the
credibility of expert from historical data, which is converted to weights in evaluation process. We first use the Support Vector
Machine (SVM) classifier to classify the historical evaluation data of experts and calculate the experts’ evaluation credibility, then
determine the weights of the evaluation experts, finally assemble the weighted evaluation results, and get a preference order of
choosing suppliers.1emain contribution of this method is that it overcomes the shortcomings of multiple conversions and large
loss on evaluation information, maintains the initial evaluation information to the maximum extent, and improves the credibility
of evaluation results and the fairness and scientificity of supplier selection. 1e results show that it is feasible to classify the past
evaluation data of the evaluation experts by the SVM classification model, and the expert weights determined on the basis of the
evaluation credibility of experts are adjustable.

1. Introduction

Supplier evaluation and selection is an important part of
strategic decision-making management in enterprises, and
also an important branch of enterprise supply chain man-
agement research [1, 2]. In the operation processes of en-
terprises, the production and operation behaviors, such as
the procurement of raw materials, machinery, and equip-
ment, as well as external technology, services, are generally
related to the choice of suppliers [3, 4]. How to choose
suppliers by scientific decision-making will play a vital role
in improving the market competitiveness of enterprises and
maximizing economic and social benefits.

1e existing domestic and overseas researches on sup-
plier selection mainly focus on two aspects: the first is the
construction of evaluation index system in the decision-
making process of supplier selection, mainly focusing on the
industry areas of enterprises and the personalized

requirements of suppliers [5–7]. 1e second is how to select
the evaluation method and model scientifically [8–10], such
as Best-worst method (BWM), TOPSIS, and Fuzzy. 1e
research in [11] has identified the 5 essential barriers of
supply chain and proposed a methodology called Fuzzy-
AHP to compare the weight of these barriers. A Combined
FUCOM Rough SAW approach has been used in supplier
selection and has been performed in order to achieve sus-
tainability in resources and environment [12]. Best-worst
method was used to decide the weights of green supplier
selection, which aims to provide environment-friendly in-
formation system products [13]. In [14], to decide the im-
portance of selection criteria, Fuzzy-TOPSIS technique is
used, which helps select dairy suppliers. Chakraborty et al.
[15] try to solve the uncertainty in supplier selection with D
numbers, and MARCOS is used for ranking alternative
suppliers. Zhu et al. [16] built a closed-loop supply chain
model and focus on the recycling behaviors of the members
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in this supply chain. Kurpjuweit et al. [17] developed a
typology of three supplier selection archetypes. In [18], to
show the application of a structured decision-making
technique is vital, especially under the complex conditions
that include both qualitative and quantitative criteria. Pearn
et al. [19] considered a two-stage method composed of
quality verification and selection decision for multiple-line
supplier selection problems. Xie et al. [20] try to solve the
uncertain yield and demand in supplier selection. However,
these assembly methods focus only on the mathematical
operation during the process of assembling evaluation and
do not fully consider evaluating the loss of information in
the assembly process. In fact, the more the times evaluation
information assembled and converted using mathematical
methods, the larger the loss of information.

Support Vector Machine (SVM) is a supervised machine
learning method based on statistical learning theory, which
becomes a hot research topic in the field of artificial intelligence
after artificial neural networks in recent years. SVM method is
built on the principle of Vapnik-Chervonenkis (VC) dimension
and structural risk minimization in statistical learning theory.
VC dimension is a core concept of statistical learning theory; it
is an important indicator to describe the learning ability and
complexity of function sets. SVM uses limited sample infor-
mation to best compromise between model complexity and
learning ability and obtains good generalization ability [21]. It
has been widely used in many fields like classification [22, 23],
feature selection [24], pattern recognition [25], and trouble-
shooting [26].

1is paper proposes to use SVM classifier in the supplier
selection process. Experts’ past evaluation data is classified and
used for calculating the evaluation credibility, and the evaluation
credibility is used to determine the evaluation experts’ weight.
1en, the evaluation results are directly assembled with simple
mathematical calculations; it not only retains initial evaluation
information maximally, but also improves the credibility of
evaluation results and realizes the fairness and scientificity in
decision-making of supplier selection.

1e paper aims to solve the problems in supplier selection
and improve the fairness and reasonability. 1e main contri-
bution is that SVM is used to evaluate the credibility of experts,
which is subsequently converted to weight in supplier evalu-
ation. Our method avoids multiple conversions and large loss
on evaluation information, largely keeps the initial evaluation
information, and improves the credibility of evaluation results.

1e paper is organized as follows: Section 1 overviews the
motivation, related works, and our basic idea. Section 2
describes the method and theories used in our paper. Section
3 describes how we process data to an unbiased way and meet
the requirement of SVM classifier. Section 4 is the whole
processing flow of our method, SVM classifier is trained, and
then it is used to infer the credibility of experts, which is
eventually converted to experts’ weight in supplier selection.

2. Theoretical Model and Methodology Design

2.1. .eoretical Model: SVM Classifier. Traditional statisti-
cal research is based on the law of large numbers, which is
an approximation theory on huge amounts of samples, but

in reality, there are always limited amounts of samples and
cannot meet the requirement of the theory. To solve this
problem, Vapnik et al. proposed a machine learning
theory, called the statistical learning theory (STL). Cortes
and Vapnik proposed linear support vector machine [27],
Boser and Vapnik introduced kernel techniques and
proposed nonlinear support vector machine [28], and
Druckers et al. extended it to support vector regression
[29]. 1e original binary classification model was ex-
tended to multiclass classification support vector machine
[30] and structural support vector machine for structural
prediction [31].

Assume the training set with n samples is

x1, y1( 􏼁, x2, y2( 􏼁, . . . , xn, yn( 􏼁, xi ∈ R
n
, yi ∈ −1, 1{ }.

(1)

For a set of functions f(x, w)􏼈 􏼉, there exists an optimal
function f(x, w0) which will minimize the expected risk
when it is used to evaluate unknown samples:

R(w) � 􏽚 L(y, f(x, w))dF(x, y), (2)

where f(x, w)􏼈 􏼉 is the set of prediction function,
L(y, f(x, w)) is loss function that defines how much the
prediction of f(x, w) deviated from real value, and F(x, y)

is joint probability.
In practical machine learning context, the expected risk

cannot be calculated or minimized, because the joint
probability F(x, y) is unknown [32]. Empirical Risk Min-
imization (ERM) method is widely used in traditional
machine learning; it aims at minimizing empirical risk
Remp(w), but it is not reasonable when there are only limited
amounts of samples. In statistical learning theory, under the
worst distribution, empirical risk meets the relation in
equation (3) with the probability 1 − η:

R(w)≤Remp(w) +

���������������������

h(ln(2n/h) + 1) − ln(η/4)

n

􏽳

, (3)

where n is the number of samples, and h is VC dimension.
For a practical classification problem, the number of samples
is fixed, and the higher the VC dimension is (which means
higher complexity of the classifier), the larger the confidence
interval will be, and this will lead to the larger gap between
real risk and empirical risk [33].1erefore, when we design a
classifier, not only the empirical risk, but also the VC di-
mension is required to be minimized to shrink the confi-
dence interval and minimize the expected risk; this is called
structural risk minimization (SRM) [34].

Support Vector Machine is a novel machine learning
method based on principles of VC dimension and structural
risk minimization, which is specialized to deal with the
problems with limited number of samples [35]. SRM im-
proved the generalization ability of models, and no limi-
tation on the dimension of data. For linear classification, the
classification plane is the plane that has largest distance with
each class [36, 37]; for nonlinear classification, high di-
mension transformation is applied to data and turns
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nonlinear classification problem into a linear classification
problem in a higher dimension space [38].

SVM was originally proposed to solve linear separable
problems. Its theory is developed from optimal classification
hyperplane in linear separable problems. Suppose the
training sample set given in formula (1), is linearly separable;
that is, there exists a classification hyperplane g(x) � w ·

x + b � 0 that can divide n samples correctly and has the
maximum distance from each class. 1is hyperplane is the
optimal classification hyperplane, and the distance between
the nearest sample in each class and the optimal classifi-
cation plane is called margin. 1erefore, the optimal hy-
perplane is also known as the maximum interval hyperplane,
as shown in Figure 1.

Optimal classification hyperplane can separate two
classes of samples correctly and made samples in a single
class all fall into one side of the hyperplane, which means
that all samples satisfy:

w · x + b≥ 0, yi � +1,

w · x + b≤ 0, yi � −1.
(4)

1is condition can be written as

w · x + b≥ 1, yi � +1,

w · x + b≥ 1, yi � +1,
(5)

through adjusting scale, which means that g(x) of the first
class should be larger or equal to 1, and g(x) of the second
class should be less or equal to −1.1ese two inequalities can
be combined to a single inequality:

yi[(w · x) + b]≥ 1, i � 1, 2, . . . , n. (6)

1e values of g(x) of samples on boundary in each class
equal 1 and −1, respectively, so the margin between two class
is M � 2/w; hence, the problem of finding an optimal hy-
perplane converts to an optimal problem under constraints
of inequalities:

min
w,b

1
2
‖w‖

2 subject toyi w · xi( 􏼁 + b􏼂 􏼃 − 1≥ 0, ∀i, (7)

which can be equally converted to the following optimiza-
tion problem using Lagrange method:

min
w,b

max
a

L(w, b, a) �
1
2

‖w‖
2

− 􏽘

l

i�1
ai yi w · xi( 􏼁 + b􏼂 􏼃 − 1􏼈 􏼉,

subject to yi w · xi( 􏼁 + b􏼂 􏼃 − 1≥ 0, ∀i,
(8)

where ai ≥ 0, i � 1, 2, . . . l, are Lagrange coefficients. We can
get the optimal classification function by using quadric
programming method, and the solution is

f(x) � sgn (w · x + b){ } � sgn 􏽘
l

i�1
aiyi xi · x( 􏼁 + b

⎧⎨

⎩

⎫⎬

⎭.

(9)

For linear nonseparable problems, we can use the
nonlinear mapping Φ: Rn⟶ H, mapping samples in

original input space into a higher dimension feature space,
and then construct optimal classification hyperplane. Dot
product operations in mapping samples into higher di-
mension space are computation intensive. Bajard et al. and
Hamidzadeh et al. proposed to replace dot product opera-
tion with use kernel functions K(xi, xj) � Φ(xi)Φ(xj) that
satisfy Mercer condition to reduce computation complexity
[39, 40].

Support vector machine can perform various kinds of
nonlinear classifiers by selecting different kernel functions.
1ere are three common types of kernel functions:

(1) Polynomial kernel function:

K x, xi( 􏼁 � x · xi( 􏼁 + 1􏼂 􏼃
q
, (10)

where q is the order of polynomial.
(2) Radical base function (RBF):

K x, xi( 􏼁 � exp −
x − x

2
i

2σ2
􏼠 􏼡, (11)

in which σ is the width of the radical base function.
Each center of a base function is corresponding to a
support vector, and its position, width, number, and
weight can be determined by training process.

(3) Sigmoid kernel function:

K x, xi( 􏼁 � tanh υ x•xi( 􏼁 + c( 􏼁. (12)

SVM classifier that employs Sigmoid function, when
v and c satisfy certain condition, equals a multilayer
perception neural network that contains only one
hidden layer, and the number of nodes in hidden
layer is the number of support vectors.

w

yi=+1

yi=-1

x1

{x∣(w ∙ x) + b} = 0

{x∣(w ∙ x) + b} = +1

M = 2/∥w∥

{x∣(w ∙ x) + b} = –1

x2

Figure 1: Optimal classification hyperplane.
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2.2. Methodology Design

2.2.1. Overview of Research Methodology. In this paper, we
propose a novel weighted method based on SVM to evaluate
suppliers. Our method consists of four parts: (1) we collect the
history evaluation data of experts and preprocess them as
training and test data; (2) train a SVM classifier and apply this
classifier to the validation data to evaluate the credibility of
evaluation experts’ opinion; (3) determine the weight of each
expert according to the credibility; (4) evaluate suppliers with
expert’s weight and experts evaluation data. 1e whole work-
flow is shown in Figure 2.

Our method simplified the mathematical operation
during the process of assembling evaluation, which reduces
the loss of information. Also, the usage of SVM classifier,
which performs excellent in limited number of samples,
turns the evaluation of credibility into an easy job. Our
method is reasonable and effective in supplier selection.

2.2.2. Samples Set of SVM Classifier. SVM is a supervised
machine learning method; it has two processes in solving a
classification problem: learning and classification. During
the learning process, training data is used to train a classifier
according certain efficient policy; then, the classifier is used
to classify the input data samples [41]. In our paper, experts’
evaluation data set are defined as

E � x1, y1( 􏼁, x2, y2( 􏼁, . . . , xn, yn( 􏼁􏼈 􏼉, (13)

xi � (xi1, xi2, . . . , xi(2l))
T is an input vector of 2l dimensions,

which is preprocessed expert evaluation data; yi � −1, 1{ } is
its corresponding output. In our work, “+1” means that
evaluation of an expert is credible, and xi is credible data;
“−1” means that evaluation of an expert is biased, thus, it is
xi called biased data. In our experiment, 80% of all evalu-
ation expert evaluation sample data are used for training
data, and the remaining 20% are used as validation data.

2.2.3. Kernel Function and Parameter of SVM Classifier.
Kernel function is a very important part of SVM classifier; it will
affect the result of classification, but Mercer 1eory only gives
some alternative functions that can be used in support vector
algorithm but does not explain how to construct nonlinear
transformation function Φ(x) and kernel functions K(xi, xj),
and the type and parameter of kernel function are to be de-
termined according to your own task.

Compared to polynomial kernel function, radical base
kernel function has less parameters; it has relative fast com-
putation and adapts to parameter adjustment [42]; Sigmoid
kernel function only has two parameters, but it cannot be
represented as dot product of two vectors in feature space
[43, 44]. So, the radical base function is used as a kernel function
in our research according to the characteristics of our samples.
1e optimal classification function is

f(x) � sgn (w · x + b){ } � sgn 􏽘
l

i�1
aiyi exp c xi − xj

�����

�����
2

􏼒 􏼓 + b
⎧⎨

⎩

⎫⎬

⎭.

(14)

We employ K-fold cross validation method to select and
optimize parameters of SVM classifier: first, samples are

divided into K mutually disjoint subsets with same size,
every subset is used as validation set once, and other K−1
subsets are used as training set to train the classifier. 1en,
we select parameters that give the smallest validation error as
the optimal parameters of classifier after traverse all K
alternatives.

2.2.4. Evaluation Experts’ Credibility and Evaluation Weight.
1e evaluation data of an evaluation expert in n most re-
cently bids activities are selected as the input of SVM
classifier, and the credibility of this evaluation experts is
defined according to the output of SVM classifier as

zi �
Ni

Ni + Mi

× 100%, (15)

where Ni is number of times of getting an output “+1,” and
Mi is the number of times of getting an output “−1.”

1e credibility of an evaluation expert can reflect the
quality of his evaluation data in the past. We defined a
normalized weight wi of his historical evaluation data based
on evaluation credibility zi:

wi �
zi

􏽐
m
i�1 zi( 􏼁

, i � 1, 2, . . . , m. (16)

3. Data Preprocessing

During the process of supplier bid activities, because of the
difference of purchasing categories, different evaluation
attributes and evaluation criteria will be applied, and eval-
uation experts and suppliers are various in each bid activity,
which means that the original evaluation data of experts are
not comparable, and it must be processed beforehand to
make it comparable and more reasonable and can be fed into
a SVM classifier.

Because the original sample data itself implies the key
information of evaluation characteristics of experts, and
different data preprocessing methods have different degrees
of retention of characteristic information, only appropriate
preprocessing methods can unify the unit of data and will
not affect the classification effect. In this paper, a combined
method is used to preprocess the evaluation data of the
experts; the process is as follows:

3.1. Normalization Processing of a Group Evaluation Data.
Assume that xm

ij is the evaluation data that the m th eval-
uation expert had given to i th supplier’s j th attribute, and
after the group normalization processing, we get x

m(1)
ij :

x
m(1)
ij � 1 −

x
m
ij

􏽐
h
m�1 x

m
ij /h

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (17)

where i indicates the i th supplier; i � 1, 2, . . . , k j is j th
evaluation attribute, j � 1, 2, . . . , l; m means m th evaluation
expert, m � 1, 2, . . . , h.

Taking a public bid activity of goods as an example, there are
four suppliers (namedP1, P2, P3 and P4) participating in this bid,
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and five evaluation experts (namedA, B, C, D and E) performed
evaluation to these suppliers, and the total evaluation score is
100, inwhich 30 points is the objective score relatedwith quoted
price, and 70 points is the score given by evaluation experts. In
this paper, we only consider the expert evaluation score, and
their original evaluation data to different attributes of suppliers
are shown inTable 1 inwhich “bidding responsiveness” refers to
the degree of matching with bidding requirements, and the
value in parentheses means the maximum point to different
attribute of supplier.

Towell understand the evaluation data from experts A, B, C,
D and E, we use the box plot in Figure 3 to illustrate distribution
of the evaluation data. Figures 3(a) to 3(e) are corresponding to
five different indexes; e.g., Figure 3(a) is the distribution of
scores that experts give to technology index for supplier P1 (blue
box), P2 (orange box), P3 (grey box), and P4 (yellow box).

From this figure, we can see that the score distributions
of P1 and P3 are more concentrative in all five indices than
those of P2 and P4, and average scores of all indices are
relatively higher for P1 and P3.

1e evaluation data in Table 1 has the initial weights of
the evaluation attributes; we need to remove the weights
before normalization. 1e normalized evaluation data are
shown in Table 2.

3.2. Normalization of Individual Evaluation Data.
Original evaluation data xm

ij of m th evaluation expert is
normalized according to an individual expert and get the
normalized data x

m(2)
ij :

x
m(2)
ij � 1 −

x
m
ij

􏽐
k
i�1 x

m
ij /k

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (18)

where i indicates the i th supplier, i � 1, 2, . . . , k, j is j th
evaluation attribute, j � 1, 2, . . . , l, and m means m th
evaluation expert, m � 1, 2, . . . , h.

Similarly, we remove the attribute weight of data in
Table 1 and put them into formula (18), and we can get the
normalized data of each individual expert, as shown in
Table 3:

After the data preprocessing, the evaluation data of
experts not only keep the critical information of original
evaluation data, but also remove the barrier between dif-
ferent attribute criterion and magnitude. 1e evaluation
sample (xi, yi) of expert in formula (11) is formed by
evaluation data in Tables 2 and 3 (which formed xi), and its
corresponding output label yi.

4. Experimental Analysis

4.1. Samples Source and Samples Set Distribution. 1e ex-
perimental sample data in this study are derived from the
evaluation records of some evaluation experts who are
often involved in the supplier biding activities. We ex-
tract 450 groups of evaluation data that meet the criteria
as experimental samples, and all the original evaluation
data are normalized by the group and individual with
method shown Section 4 to form a valid dataset. 1e
number of positive and negative samples is well balanced
in the process of selecting experimental samples to im-
prove the accuracy of SVM classifier, in which 80% of the
total sample data is randomly selected to form the
training set for learning and optimizing the parameters of
the classifier, and the remaining 20% of the samples
composed test set to test the accuracy of the classifier.

4.2. Training a SVM Classifier. 1e experimental tools for
this study were based on a popular SVM software
packages, Libsvm [45]. Since the Libsvm package has its
own format requirements for input data, the training data
and validation data mentioned above are first converted

Training Set Test Set

Samples Set of SVM Classifier

Selecting Kernel
Function

Determining the
Parameters

Training a SVM Classifier

Evaluation Date
Pre-processing SVM Classifying

Determining the Weight of Evaluation Experts

Calculate Evaluation
Weight of Evaluation

Experts

Calculating Evaluation
Credibility of

Evaluation Experts

Evaluating the
suppliers

Figure 2: Workflow of our method.
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to the required format of “svmtrain” and “svmpredict”
functions. grid py tool of LibSVM with 10-fold cross-
validation is used to find the optimal parameter value of c

(penalty factor) and gamma (variance in RBF nuclear
function) of RBF kernel function. When the model
performance is the same, the combination of parameters
with a smaller penalty factor is preferred in order to
reduce the calculation time. Eventually, the optimal
parameter combination of c � 8, gamma � 0.0625, is se-
lected. 1e SVM classifier is trained by the “svmtrain”
function, and then “svmpredict” function is applied to the
validation samples to evaluate classifier model, and the
accuracy of the classification is 96.67%.

4.3. Calculating Evaluation Credibility and Weight of Eval-
uation Expert. Taking the five evaluation experts in a
procurement of goods as an example, all the evaluation
records of these five evaluation experts in the last 10
procurement evaluation activities are collected; if an
expert’s past evaluation data is insufficient, the evaluation
credibility of the expert will be assigned to the average
value. 1e extracted raw evaluation data is preprocessed
and converted to the format required by the Libsvm
package, then fed into the SVM classifier. 1e evaluation
credibility of each expert is calculate using formula (15)
based on the output of SVM classifier, and the results are
shown in Table 4.

Table 1: Original evaluation data from evaluation experts.

Expert Supplier Technology
(35 points)

After-sale
service (15
points)

Financial
conditions
(10 points)

Credibility
(5 points)

Bidding
responsiveness
(5 points)

A

P1 30 13 9 5 5
P2 26 12 8 5 5
P3 28 13 8 5 5
P4 20 10 6 4 4

B

P1 31 14 10 5 5
P2 26 12 8 4 5
P3 29 13 9 5 5
P4 28 13 9 5 5

C

P1 30 13 9 5 5
P2 23 11 7 4 3
P3 29 12 9 5 5
P4 27 12 9 5 5

D

P1 29 12 8 5 5
P2 32 14 10 5 5
P3 30 13 9 5 5
P4 28 12 8 5 5

E

P1 28 11 8 5 5
P2 25 10 8 4 4
P3 33 14 10 5 5
P4 28 11 8 5 4

1

35

30

25

20

15

10

5

0

Technology

(a)

1

16

14

12

10

8

6

4

2

0

After-sale
service

(b)

1

12

10

8

6

4

2

0

Financial
conditions

(c)

1

6

5

4

3

2

1

0

Credibility

(d)

1

6

5

4

3

2

1

0

Bidding
responsiveness

(e)

Figure 3: Distribution of evaluation data of experts (a–e).
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Table 2: Normalization of a group of evaluation data.

Supplier Expert Technology After-sale service Financial conditions Credibility Bidding responsiveness

P1

A 0.0135 0.0317 0.0227 0.0000 0.0000
B 0.0473 0.1111 0.1364 0.0000 0.0000
C 0.0135 0.0317 0.0227 0.0000 0.0000
D 0.0203 0.0476 0.0909 0.0000 0.0000
E 0.0541 0.1270 0.0909 0.0000 0.0000

P2

A 0.0152 0.0169 0.0244 0.1364 0.1364
B 0.0152 0.0169 0.0244 0.0909 0.1364
C 0.1288 0.0678 0.1463 0.0909 0.3182
D 0.2121 0.1864 0.2195 0.1364 0.1364
E 0.0530 0.1525 0.0244 0.0909 0.0909

P3

A 0.0604 0.0000 0.1111 0.0000 0.0000
B 0.0268 0.0000 0.0000 0.0000 0.0000
C 0.0268 0.0769 0.0000 0.0000 0.0000
D 0.0067 0.0000 0.0000 0.0000 0.0000
E 0.1074 0.0769 0.1111 0.0000 0.0000

P4

A 0.2366 0.1379 0.2500 0.1667 0.1304
B 0.0687 0.1207 0.1250 0.0417 0.0870
C 0.0305 0.0345 0.1250 0.0417 0.0870
D 0.0687 0.0345 0.0000 0.0417 0.0870
E 0.0687 0.0517 0.0000 0.0417 0.1304

Table 3: Normalization of individual evaluation data.

Expert Supplier Technology After-sale service Financial conditions Credibility Bidding responsiveness

A

P1 0.1538 0.0833 0.1613 0.0526 0.0526
P2 0.0000 0.0000 0.0323 0.0526 0.0526
P3 0.0769 0.0833 0.0323 0.0526 0.0526
P4 0.2308 0.1667 0.2258 0.1579 0.1579

B

P1 0.0877 0.0769 0.1111 0.0526 0.0000
P2 0.0877 0.0769 0.1111 0.1579 0.0000
P3 0.0175 0.0000 0.0000 0.0526 0.0000
P4 0.0175 0.0000 0.0000 0.0526 0.0000

C

P1 0.1009 0.0833 0.0588 0.0526 0.1111
P2 0.1560 0.0833 0.1765 0.1579 0.3333
P3 0.0642 0.0000 0.0588 0.0526 0.1111
P4 0.0092 0.0000 0.0588 0.0526 0.1111

D

P1 0.0252 0.0588 0.0857 0.0000 0.0000
P2 0.0756 0.0980 0.1429 0.0000 0.0000
P3 0.0084 0.0196 0.0286 0.0000 0.0000
P4 0.0588 0.0588 0.0857 0.0000 0.0000

E

P1 0.0175 0.0435 0.0588 0.0526 0.1111
P2 0.1228 0.1304 0.0588 0.1579 0.1111
P3 0.1579 0.2174 0.1765 0.0526 0.1111
P4 0.0175 0.0435 0.0588 0.0526 0.1111
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We put the evaluation credibility of expert into formula
(16) and get the normalized weight of each expert:

w � (w1, w2, w3, w4, w5)

� (0.2018, 0.2097, 0.1910, 0.1960, 0.2015).
(19)

4.4. Determination of the Supplier Selection Results. Set the
“expert-supplier” evaluation matrix to

E � e1 e2 . . . el( 􏼁
T

�

e11 e12 . . . e1m

e21 e22 . . . e2m

⋮ ⋮ ⋱ ⋮

el1 el2 . . . elm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Based on the original evaluation values for the 4 sup-
pliers by the 5 evaluation experts, with the initial weights of
the attributes removed, we can get the “expert-supplier”
evaluation matrix as

E � e1 e2 e3 e4( 􏼁
T

�

4.624 4.343 4.467 3.438

4.819 4.143 4.596 4.567

4.624 3.490 4.529 4.471

4.429 4.847 4.624 4.400

4.333 3.781 4.876 4.133

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

With this evaluation matrix E and the normalized
weights of the 5 evaluation experts wi mentioned earlier, the
following formula is used to combine all experts’ evaluation
results:

pj � 􏽘
l

i�1
eij ∗wi, j � 1, 2, . . . , m, (22)

and we get evaluation results for each supplier as p1 � 4.568 ,
p2 � 4.124, p3 � 4.619, p4 � 4.201.

1erefore, in this supplier evaluation and selection
process, the preference order for suppliers is
p3 >p1 >p4 >p2.

4.5. Discussion of Weight Selection in Supplier Selection
Management. When the weights of evaluation experts are

determined by the experts’ credibility, different weighting
formulas can produce different expert weight coefficients;
for example, if we use formula (23) to generate the evalu-
ation expert weight wi

′:

wi
′ �

Hi

􏽐
m
i�1 Hi

, (23)

where

Hi � 1 −
1 − zi( 􏼁−

􏽐
m
i�1 1 − zi( 􏼁

. (24)

1en, put the experts’ credibility z in Table 4 into for-
mula (24) and (23), and we will get the following weights of
evaluation experts: w′ � (w1′, w2′, w3′, w4′, w5′) � (0.2118,
0.2634, 0.1410, 0.1741, 0.2097).1e comparison of the weight
coefficients that come from different weighting formula of 5
experts is shown in Table 5:

1e two sets of evaluation expert weight coefficients
generating formulas (16) and (23) are different in value, but
their changing trends are the same; that is, the two sets of
weight coefficients of evaluation expert are linearly related to
the evaluation of expert evaluation credibility; further
analysis shows that expert weight coefficients with different
degrees of discrete can be drawn from different formula,
while evaluation credibility stays the same. 1e result
convinces that we can adjust the degree of discreteness of
expert weights according to specific needs of enterprise’s
procurement projects when using evaluation credibility to
determine experts’ weights. In addition, the comparison
between this method and the mean weight method is shown
in Figure 4. 1e expert weight coefficients obtained on the
basis of the evaluation credibility of experts all have the same
trend of change, and this also verifies that our method has its
scientificity and universality.

From the sensitivity analysis of this research method, it
can be found that there is no significant difference in the
results of expert evaluation credibility, whether the evalu-
ation data of expert are collected of the last 10 or 50 pro-
curement evaluation activities. 1is verifies that the
evaluation credibility of expert obtained has good stability.
But the SVM classifier is sensitive to the choice of kernel
function and its parameters. We select the kernel function
and its parameters in this research based on our experience.

Table 4: Results of classification of evaluation data and evaluation credibility of expert.

# Expert Number of samples Output Evaluation credibility (%)

1 A 53 Credible 51 96.23Biased 2

2 B 50 Credible 50 100.00Biased 0

3 C 56 Credible 52 91.07Biased 4

4 D 46 Credible 43 93.48Biased 3

5 E 51 Credible 49 96.08Biased 2
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5. Conclusions

With the help of artificial intelligence tools, this paper
explores a novel method of using the evaluation credi-
bility of experts to determine the weight of the experts’
evaluation, so as to effectively assemble the evaluation
results together and optimize the supplier selection. 1e
process of this study not only demonstrates the feasibility
of using the SVM classification model to classify the
experts’ past evaluation data but also verifies that the
expert weight determined on the basis of the evaluation
credibility of the expert is universal. In the enterprise
supplier selection practice, it can be used to adjust the
evaluation weight of different experts according to the
specific needs of the procurement projects or adjust the
weight assignment of the same expert in different pro-
curement projects. Certainly, there are still some limi-
tations in our research: if the sample data is large, the
training of SVM classifier will take more time. In addi-
tion, the performance of SVM classifier mainly depends
on the selection of kernel function. At present, the kernel
function and its parameters are selected manually, and
there is no better way to solve this problem other than
experience value. In the future, we will endeavor to find
more appropriate kernel and parameters to improve SVM
classifier model and explore the more effective ways to
integrate experts’ evaluation results.
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