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ABSTRACT 
 
Background: The complexity of an urban area makes mapping it very difficult as its surface 
materials are highly spatial and spectrally diverse. This study evaluates the problems associated 
with remote sensing of urban land cover types.  
Methodology: Three satellite image sensors; Disaster Monitoring Constellation (DMC), Landsat 
TM and colour infrared were used to investigate their potential in mapping and characterizing land 
cover in a part of Greater Manchester. Supervised and unsupervised image classifications were 
used to map urban land use and cover.  
Results: The satellite image sensors and their accuracy were statistically tested to see if there is a 
significant relationship between them. The colour infrared image was the best in discriminating 
among different types of land cover with an overall accuracy of 80% followed by the Landsat image 
with an overall accuracy of 61% while the DMC image had the least potential in discriminating 
among different types of land cover with an overall accuracy of 55%.  
Conclusion: The colour infrared image is the most suitable for urban land cover analysis as the 
misclassifications are minimal compared to the other two and the features can be vividly recognized 
due to its spatial resolution.  
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1. INTRODUCTION  
 

Remote sensing has the considerable potential 
to produce thematic maps that represent spatially 
continuous and highly consistent spatial and 
temporal scales of the earth`s surface Z [1, 2]. 
Remotely sensed data are usually deployed for 
image classification which can subsequently be 
used to describe the land cover of a region [3–5]. 
Although, remotely sensed images have been 
successfully used in mapping a wide range of 
land covers at varying spatial and temporal 
scales, their full potential as a land  cover 
information source is yet to be realized [6, 7]. 
 

Urban environment has been regarded as one of 
the most challenging areas in remote sensing. 
This is due to the high spatial and spectral 
diversity of surface materials, making the urban 
environment highly heterogeneous. Urban 
surface types usually create spectral diversity 
that greatly exceeds the natural environment. 
Over time, studies have reported problems 
arising from remote sensing of urban areas [8, 9] 
with some suggesting a rule of thumb of 5m 
spatial resolution for mapping urban areas [10, 
11].  
 

Despite the developments of satellite imaging 
technology, land use and land cover maps, and 
image processing statistics remain a challenge 
[12, 13]. Very few studies have compared the 
accuracy of different image classification 
methods using different images obtained using 
different satellite sensors [14–16]. Researchers 
have attempted to improve resolution and 
precision, leading to more noticeable change 
detection [8, 17]. However, with improved 
models, misclassification is still a challenge  [18], 
and differentiation between land use types 
remains challenging [19]. This research 
compares the result of supervised and 
unsupervised image classifications of three 
different satellite sensors acquired at 
approximately the same time to assess their 
efficacy in discriminating urban land cover types 
and their accuracy level assessed. It also 
examines the effect of the satellite image 
sensor`s spatial resolution on the accuracy 
assessment.   
 

2. MATERIALS AND METHODS 
 

2.1 Study Site  
 

The study site is in the mid-east of Greater 
Manchester Metropolitan County in North West 

England. It is a heavily urbanized county made 
up of several settlements and vast built-up areas 
(Fig. 2). It runs through two Greater Manchester 
metropolitan counties, covering some of North-
East Manchester and the eastern part of Salford 
(Fig. 1). 

 
The study site comprises different buildings, a 
river, vegetation types, parks, and a good rail 
and road network (Fig. 2). It has a wide range of 
land cover types like that of Anderson [20] and is 
therefore appropriate for urban area study and 
will be appropriate for assessing the efficacy of 
different images in discriminating among various 
types of land cover, including vegetation types, 
water bodies, and buildings by different sensors.  
 

2.2 Data Collection  
 
The data sets used for this project are Landsat a 
4-5 TM image from the United States Geological 
Survey Agency (USGS) EarthExplorer database 
http://edcsns17.cr.usgs.gov/NewEarthExplorer/. 
The image was acquired on the 10

th
 of June 

2006. It has seven bands with only three bands 
of the sensors assigned to the three primary 
colours to make it a false colour composite [21]. 
The near infrared band displayed through a red 
filter, the red band through a green filter and the 
green band through a blue filter. Each band has 
a spatial resolution of 30m with band 6 originally 
120m but resampled to 30m. The image was 
downloaded as level 1 geotiff file.  
 
The second is Disaster Monitoring Constellation 
(DMC) image from DMC International Imaging 
http://www.dmcii.com/  The image was acquired 
by Nigeriasat DMC satellite on the 10

th
 of May 

2006. It is also a false colour composite and was 
downloaded as an ortholevel tiff image. It has a 
spatial resolution of 32m. 
 
The third is a colour infrared image from Bluesky 
http://www.bluesky-world.com/. The image was 
acquired on the 22

nd
 of June 2010. It has three 

bands and is a false colour composite with a 
spatial resolution of 0.5m and was downloaded 
as level tiff file. 
 
For complete and accurate characterization of 
ground features from remotely sensed data, 
Steven [22, 23] states that ground data is 
required. Because of the high resolution 
orthorectified images of modern aerial 

http://edcsns17.cr.usgs.gov/NewEarthExplorer/
http://www.dmcii.com/
http://www.bluesky-world.com/
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photographs can be used as additional 
complementary data to other geo-referenced 
data or as a standalone base map. Several 
researchers have used aerial photographs as 
reference data [24–26]. They are highly valued 
because they are the only materials with high 

credibility on terrain coverage and use [27]. The 
reference data used for this research is an aerial 
photograph of the study area acquired on the 
20

th
 of December 2006 by The GeoInformation 

Group http://www.geoinformationgroup.co.uk  
and has a spatial resolution of 0.125m.  

 

 
 

Fig. 1. Map of the study area; the center of the town of Greater Manchester 
Source: http://www.greatermanchestersurveyors.co.uk/ 

 

 
 

Fig. 2. Aerial Photograph of the study area, the town center of Greater Manchester 

http://www.geoinformationgroup.co.uk/
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2.3 Preprocessing Methods  
 
The images were geometrically corrected as 
remotely sensed data acquired by satellites 
represents the irregular surface of the earth. This 
was done by checking the satellite images 
against GoogleEarth and a vector Ordnance 
Survey (OS) MasterMap of Manchester 
downloaded from EDINA Digimap 
http://edina.ac.uk/digimap/. The GoogleEarth 
assessment shows that the Landsat and DMC 
image has an acceptable accuracy of 6.13m and 
10.75m respectively. Subsets of satellite images 
were then generated to get the study area.  
 
The Landsat image was stacked into a single 
layer as it has seven individual bands. The 
Landsat and DMC images were reprojected to 
Ordnance Survey Great Britain (OSGB). The 
study sites were then extracted from the full 
image using the subset image function. A 2km by 
2km square perimeter was selected to bring out 
the details of the heavily urbanized area. All 
these processes were carried out in Erdas 
Imagine.  
 

2.4 Image Classification 

   
This is the process by which different classes or 
themes are extracted from raw remotely sensed 
digital satellite data [7, 28, 29]. Each pixel is 
usually considered to be a unique unit consisting 
of values in different spectral bands. By 
comparing pixels to one another and to pixels of 
known identity, users of remotely sensed data 
can assemble groups of identical pixels into 
classes [7, 30].  
 
Several classification methods have been 
proposed and developed for the derivation of 
land cover information from remotely sensed 
images. Unsupervised and supervised 
classification approach has been at the core of 
land cover mapping [31, 32]. Unsupervised 
classification identifies structures or natural 
groups within a multispectral data, while 
supervised is the process by which samples of 
known identity are used to classify pixels of 
known identity.  
 
The most widely used per-pixel approach, 
Maximum Likelihood Classification (MLC), was 
used in Erdas Imagine 2010. A land use land 
cover classification system like Anderson [20] 
was used for the classification. They are: (1) river 
(2) grassland (3) woodland (4) open space (5) 
motor way (6) railway (7) commercial buildings 

(8) residential buildings. It should be noted that 
the open class feature comprises of bare soils, 
construction sites and motor parks. These 
features were identified in the reference map and 
it was decided that they will be grouped into a 
single class called open space. This is to reduce 
errors in the classification process. Because 
training samples should represent the class to be 
identified, an aerial photograph was used to 
interpret different features of the images. 
 

2.5 Classification Accuracy Assessment 
 
Accuracy assessment is the comparison of two 
maps, one of which is based on the analysis of 
remotely sensed data and the other on a different 
source of information, usually a reference map 
that serves as the standard for comparison [33]. 
This is meant to express the classification's 
degree of 'correctness,' and it may be considered 
accurate if it can provide an unbiased 
representation of the region's land cover [34]. As 
a result, any disparity between the situation 
depicted on the thematic map and reality is 
referred to as a'classification error' [35]. Lillisand 
et al [36] states that; ‘a classification is not 
complete until its accuracy is assessed’. The 
most widely used and promoted is the error 
matrix which is also used in this research. 
 

2.6 Error Matrix 
 
Campbell [37] describes it as a simple cross-
tabulation of the mapped class label against the 
observed in the ground or reference data for a 
sample of cases at specific locations”. It identifies 
overall errors for each category and identifies 
misclassifications by category [37]. Error matrix 
was used to establish the percentage of points 
allocated correctly to a feature class. Random 
sampling was used to establish data for the error 
matrix. This was accomplished by selecting 
random points on the aerial photograph and geo-
linking the aerial photograph with the classified 
images in order to compare the same points 
directly. The random points on the aerial 
photographs are areas observed as river, 
grassland, woodland, motorway, railway, open 
space, commercial buildings and residential 
buildings. The feature class of the matched 
points were recorded in the error matrix section 
sharing the same feature class for both the aerial 
photograph and the classified image. The points 
that did not match were recorded in the column 
representing the feature class that the aerial 
photograph displayed and the classified image's 
class. A total of three hundred and twenty 

http://edina.ac.uk/digimap/
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random points were used to compute the error 
matrix. The sum of the correctly classified pixels 
is then divided by the total number of random 
sample points.  
 

2.7 Kappa Coefficient  
 
To improve the overall accuracy assessment, 
Kappa coefficient is also employed. It is aimed at 
eliminating chance from the accuracy 
assessment process. The Kappa coefficient was 
calculated for the classified images using the 
Kappa coefficient equation culled from Foody [6]. 
 

  
where 
 

 
 

2.8 Chi Square Test 
 
The Chi-square test was used to determine 
whether these results were statistically significant 
or if they happened by chance. It is a non-
parametric test for categorical data analysis [38].   
 

3. RESULTS  
 
The essence of the analysis is to investigate how 
different sensors discriminate different land cover 
types. The results of these analyses will be 
presented in the subsections that follow. The 
resultant urban maps are also displayed to 
provide a visual land use pattern.  
 

3.1 Unsupervised Classification 
 

The colour infrared image result showed several 
correctly classified features, such as the river 
and buildings (Fig. 3). However, the shadow of 
high-rise buildings has been classified as a river 
and the water fall on the River Irwell classified as 
a commercial building (Fig. 3).  
 

There is little or no difference between the 
grassland and woodland feature classes as they 
are assigned to the same class (Fig. 3).  

Some parts of the open space have been 
classified as commercial buildings (figure 3), and 
almost the whole residential buildings are 
classified as railway (Fig. 3). The motorway was 
correctly classified in some parts of the image. 

 
3.2 DMC Satellite Image 
 
This unsupervised classification is very pixelized 
(Fig. 4). Almost all the class features have been 
merged together. This is due to the DMC 
sensor's spatial resolution, which is 32m. This 
means a single pixel on the DMC image covers a 
ground area of 32m resulting in a greater 
percentage of the mixed pixel. The larger the 
percentage of mixed pixels, the more difficult it is 
to record and extract spatial detail in an image 
[39]. Linear features such as the railway and 
motor way cannot be easily identified. 
 
Most commercial buildings have also been 
classified as open space due to mixed pixels and 
because the spectral reflectance of the two 
features are similar. Features that have                
similar spectral reflectance to the river such as 
shadows of buildings have been classified as 
river.  
 
The grassland and woodland along the Irwell 
River have been correctly identified. However, 
due to the sensor's spatial resolution, the 
woodland and river have been merged, resulting 
in mixed pixels. Along the edges of features, 
mixed pixels are common [40].   
 

3.3 Landsat Satellite Image  
 
Similarly, the unsupervised classification is also 
highly pixelized (Fig. 5). Because of their similar 
reflectance, most commercial buildings have 
been classified as residential and open spaces. 
Because the Landsat sensor has a spatial 
resolution of 30m, the pixels have been merged. 
This means that one Landsat pixel covers 30m of 
ground, resulting in mixed pixels. Similarly, linear 
features like railways and highways cannot be 
identified. The greater the percentage of mixed 
pixels in an image, the more difficult it is to 
record and extract spatial detail [40]. The 
grassland and woodland along the Irwell River 
have been correctly identified. The river and 
woodland, however, have been combined. 
 

3.4 Supervised Classification 
 

The result of the unsupervised classification 
necessitated a supervised classification. Training 
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areas on the image were identified and clearly 
matched to areas of known identity on the image 

which was used to run a supervised classification 
for the three satellite images. 

 

 
 

Fig. 3. Unsupervised classification of the colour infrared satellite image 
 

 
 

Fig. 4. Unsupervised classification of the DMC satellite image 
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Fig. 5. Unsupervised classification of the Landsat Satellite Image 
 

 
 

Fig. 6. Supervised classification of the colour infrared satellite image 
 

3.5 Colour Infrared Satellite Image  
 
The supervised classification result shows that 
the building's shadows were correctly classified, 
not as a river, as in the unsupervised 
classification. However, the waterfall on the River 
Irwell is still classified as a commercial building 

due to its reflective properties. (Fig. 6). This 
means that the accuracy of correctly identifying 
landscape features was not absolute.  
 
A careful selection of training areas yielded the 
correct classification of grassland and woodland 
(Fig. 6). Railway and motorways are also 
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appropriately differentiated and correctly 
classified. 
 
Similarly, the residential and commercial 
properties have been classified correctly to a 
reasonable extent. The materials used in 
commercial buildings will be the same as those 
used in residential buildings, but the training area 
was carefully defined, as evidenced by the 
difference in the two-class feature in the color 
infrared image. However, some residential and 
commercial structures have been misclassified 
as railway and motorway. 
 
Railway lines are typically made of steel or iron, 
buildings of a mix of clay, sand, wood, and rocks, 
and highways of sand, stone, and asphalt. Steel 
may be used in the construction of buildings or 
highways, depending on the nature of the 
construction, resulting in misclassification. Some 
sections of the railway line may also be built with 
stones. Furthermore, the spectral reflectance of 
these materials may be similar. Similarly, some 
open spaces have been mislabeled as roads. 
This is due to the fact that some of the open 
spaces are car parks that have been tarred with 
the same material as the motorway. 
 

3.6 DMC Satellite Image 
 
The result of the supervised classification shows 
a coarser image as compared to the colour 

infrared. (Fig. 7). The entire stretch of the river is 
not displayed with a high rate of mixed pixels. 
Similarly, the motorway and railway are not 
displayed linearly as they should. The 
commercial and residential buildings are more 
accurately classified here and have fewer mixed 
pixels unlike in the unsupervised classification. 
The woodland and grassland are not 
differentiated from one another due to mixed 
pixels. Similarly, the open space feature can 
barely be seen. This is all due to the high spatial 
resolution of the sensor and mixed pixels which 
is common along the edges of features [40]. 
 

3.7 Landsat Satellite Image 
 
The result of the Landsat is similar to that of the 
DMC. The river is slightly more accurate as its 
linear feature can be seen (Fig. 8) however, 
there is also the occurrence of mixed pixels 
around it with grassland and woodland. The 
motor way and railway are not clearly depicted 
as linear features as the sensor`s resolution is 
not able to extract this information. Residential 
and commercial buildings are accurately 
displayed in their class feature however, there is 
still the occurrence of mixed pixels. Woodland 
and grassland are more accurately classified 
here than in the DMC. High level of mixed pixels 
exists in the open space. This is because 1m on 
the sensor covers 30m on the ground, therefore 
a lot of features have been merged. 

   

 
 

Fig. 7. Supervised classification of the DMC Satellite Image 
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Fig. 8. Supervised classification of the Landsat Satellite Image 
 

3.8 Accuracy Assessment  
 

3.8.1 Unsupervised classification  
 

The accuracy assessment of the unsupervised 
classified images shows that the colour infrared 
image has the highest accuracy of the pixels 
being correctly classified (Table 1). This is 
followed by the Landsat (Table 3) and then the 
DMC (Table 2). The mixed pixels in the colour 
infrared can be attributed to the fact that some of 
the feature classes are made up of similar 
material and have the same spectral properties 
although they represent different classes on the 
map. For the DMC and Landsat, the spatial 
resolution of their sensors does not have the 
capability to map features in detail thereby 
resulting in mixed pixels.  
 

3.9 Supervised Classification 
 

The overall result is better than the unsupervised 
as training areas have been properly identified 
before the classification. The colour infrared 
image has the highest number of pixels correctly 
classified (Table 4) However, the water fall on 
the river Irwell appeared as commercial buildings 
which was also the case for the unsupervised. 
Because the spectral property of the water fall is 
similar to that of commercial buildings, it has 
been incorrectly classified as such. Similarly, 
open space, railways, commercial and residential 
buildings have been classified incorrectly. The 
Landast has the next number of pixels correctly 

classified (Table 6) followed by the DMC (Table 
5). The pixels are once again mixed due to the 
spatial resolution of their sensors.  
 

3.10 Chi-Square Test 
 

Using our degree of freedom which is 7, the 
unsupervised coloured infrared with a chi square 
of 60.075 (Table 7) has a p-value of p < 0.001. 
The unsupervised DMC with a chi-square value 
of 122.275 has a p-value of p < 0.001 while the 
Landsat with a chi-square of 86.425 has a p-
value of p < 0.001. Since the three images have 
a p value of p < 0.001, using 0.05 as our 
significant level, we reject the null hypothesis 
which states that there is no significant 
relationship between the classified images and 
their sensors. That is the sensors have 
differential capability to discriminate among 
ground features. 
 

For the supervised colour infrared image with a 
chi square value of 23.1, (Table 8) the p-value is 
0.00163. The supervised DMC image with a chi 
square value of 72.7 has a p-value of p < 0.001 
while the supervised Landsat image with a chi 
square value of 52.8 and a p-value of p < 0.001. 
They are all less than our significant level of 
0.05. Therefore, we reject the null hypothesis 
which states that there is no significant 
relationship between the classified images and 
their sensor. This means the sensors have 
differential capabilities to discriminate among 
ground features.    
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Table 1. Colour infrared unsupervised classification 
 

 River Grassland Woodland open 
space 

Motor 
way 

Railway Commercial 
buildings 

Residential 
buildings 

Row 
total 

River 39 0 0 0 0 0 1 0 40 
Grassland 0 30 10 0 0 0 0 0 40 
Woodland 0 23 17 0 0 0 0 0 40 
Open space 0 0 0 12 10 0 18 0 40 
Motor way 0 0 0 0 34 6 0 0 40 
Railway 0 0 0 0 0 33 3 4 40 
Commercial buildings 0 0 0 0 0 0 38 2 40 
Residential buildings 0 0 0 0 0 30 0 10 40 
Column total 39 53 27 12 44 69 59 17 320 

Number of correctly classified pixels: 213 
Total number of random points: 320 

Correctly classified pixels: 67% 
Kappa:  0.62 

 
Table 2. DMC unsupervised classification 

 

 River Grassland Woodland Open 
space 

Motor 
way 

Railway Commercial 
buildings 

Residential 
buildings 

Row 
total 

River 15 2 8 3 3 3 3 3 40 
Grassland 0 28 5 4 0 0 0 3 40 
Woodland 0 12 15 7 0 0 0 6 40 
Open space 0 0 0 10 9 8 13 0 40 
Motor way 0 0 0 9 18 7 6 0 40 
Railway 0 4 0 10 10 10 4 2 40 
Commercial buildings 0 0 0 10 5 0 18 7 40 
Residential buildings 4 7 8 0 0 0 8 13 40 
Column total 19 53 36 53 45 28 52 34 320 

Number of correctly classified pixels: 127 
Total number of random points: 320 

Correctly classified pixels: 40% 
Kappa: 0.31 
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Table 3. Landsat unsupervised classification 
 

 River Grassland Woodland Open 
space 

Motor 
way 

Railway Commercial 
buildings 

Residential 
buildings 

Row 
total 

River 20 0 5 5 2 0 0 8 40 
Grassland 0 25 5 5 0 0 0 5 40 
Woodland 7 8 18 0 0 0 0 7 40 
Open space 0 0 3 21 3 5 8 0 40 
Motor way 4 0 0 10 11 7 0 8 40 
Railway 0 0 2 7 6 15 5 5 40 
Commercial buildings 0 0 0 3 0 4 29 4 40 
Residential buildings 0 0 13 4 0 3 0 20 40 
Column total 31 33 46 55 22 34 42 57 320 

Number of correctly classified pixels: 159 
Total number of random points: 320 

Correctly classified pixels: 50% 
Kappa: 0.43 

 
Table 4. Colour infrared supervised classification 

 

 River Grassland Woodland Open space Motor way Railway Commercial 
buildings 

Residential buildings Row total 

River 39 0 0 0 0 0 1 0 40 
Grassland 0 39 1 0 0 0 0 0 40 
Woodland 0 0 40 0 0 0 0 0 40 
Open space 0 0 0 20 10 4 6 0 40 
Motor way 0 0 0 0 37 0 0 3 40 
Railway 0 0 0 0 0 28 7 5 40 
Commercial buildings 0 0 0 5 4 3 25 3 40 
Residential buildings 0 0 0 0 0 12 0 28 40 
Column total 39 39 41 25 51 47 39 39 320 

Number of correctly classified pixels: 256 
Total number of random points: 320 

Correctly classified pixels: 80% 
Kappa:  0.77 
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Table 5. DMC supervised classification 
 

 River Grassland Woodland Open 
space 

Motor 
way 

Railway Commercial 
buildings 

Residential 
buildings 

Row 
total 

River 17 3 4 2 2 3 5 4 40 
Grassland 0 20 13 4 0 0 0 3 40 
Woodland 0 10 22 3 0 0 0 5 40 
Open space 0 0 0 29 4 3 4 0 40 
Motor way 0 0 0 8 17 10 5 0 40 
Railway 0 3 0 8 8 12 7 2 40 
Commercial buildings 0 0 0 0 5 5 30 0 40 
Residential buildings 0 3 3 3 3 3 0 29 40 
Column total 17 39 42 57 39 36 51 43 320 

Number of correctly classified pixels: 176 
Total number of random points: 320 

Correctly classified pixels: 55% 
Kappa: 0.49 

 
Table 6. Landsat supervised classification 

 

 River Grassland Woodland open space Motor way Railway Commercial 
buildings 

Residential buildings Row total 

River 19 5 4 4 0 4 4 0 40 
Grassland 3 27 4 3 0 0 0 3 40 
Woodland 3 0 28 3 0 0 3 3 40 
Open space 0 0 3 30 0 0 7 0 40 
Motor way 4 0 0 5 22 4 0 5 40 
Railway 0 0 4 5 6 18 4 3 40 
Commercial buildings 0 0 0 6 0 5 25 4 40 
Residential buildings 2 0 4 5 0 4 0 25 40 
Column total 31 32 47 61 28 35 43 43 320 

Number of correctly classified pixels: 194 
Total number of random points: 320 

Correctly classified pixels: 61% 
Kappa: 0.55
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Table 7. Unsupervised Classification Chi Square Test 
 

Urban Land use type Colour infrared DMC Landsat TM 

Observed-Expected (O-E)
2
/E

 
O-E (O-E)

2
/E O-E (O-E)

2
/E 

River 39 - 40 0.025 15 - 40 15.625 20 - 40 10 
Grassland 30 - 40 2.5 28 - 40 3.6 25 - 40 5.625 
Woodland 17 - 40 13.225 15 - 40 15.625 18 - 40 12.1 
Open space 12 - 40 19.6 10 - 40 22.5 21 - 40 9.025 
Motor way 34 - 40 0.9 18 - 40 12.1 11 - 40 21.025 
Railway 33 - 40 1.225 10 - 40 22.5 15 - 40 15.625 
Commercial buildings 38 - 40 0.1 18 - 40 12.1 29 - 40 3.025 
Residential buildings 10 - 40 22.5 13 - 40 18.225 20 - 40 10 
Chi-Square (Total)  60.075  122.275  86.425 

 
Table 8. Supervised classification chi-square test 

 

Urban Land use type Colour infrared DMC Landsat TM 

Observed-expected (O-E)
2
/E

 
O-E (O-E)

2
/E O-E (O-E)

2
/E 

River 39 - 40 0.025 17 - 40 13.225 19 - 40 11.025 
Grassland 39 - 40 0.025 20 - 40 10 27 - 40 4.225 
Woodland 40 - 40 0 22 - 40 8.1 28 - 40 3.6 
Open space 20 - 40 10 29 - 40 3.025 30 - 40 2.5 
Motor way 37 - 40 0.225 17 - 40 13.225 22 - 40 8.1 
Railway 28 - 40 3.6 12 - 40 19.6 18 - 40 12.1 
Commercial buildings 25 - 40 5.625 30 - 40 2.5 25 - 40 5.625 
Residential buildings 28 - 40 3.6 29 - 40 3.025 25 - 40 5.625 
Chi-Square (Total)  23.1  72.7  52.8 
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4. DISCUSSION  
 
The unsupervised classification aided 
understanding the land cover structure and 
identification of homogenous clusters in the 
satellite image. The shadow of the high rise 
building was classified as a river and the water 
fall on the River Irwell classified as a commercial 
building because unsupervised classification can 
only identify spectrally homogenous classes 
within the data that may not in fact correspond to 
the informational categories [35, 41]. Within 
multispectral data, it also identifies natural 
groups as remotely sensed images are made up 
of classes that are uniform internally with respect 
to brightness in several spectral channels. In the 
light of this, the building shadows have the same 
reflection with the river which made it 
automatically pick and identify it as part of the 
river. Rivers may appear dark or light in tone 
depending on the time of the day they were 
imaged. Similarly, the waterfall on the river and 
the commercial buildings have the same 
reflectance. River Irwell has an entrenched 
channel and this may prevent reflected 
electromagnetic radiation (EMR) from reaching 
the sensor, so the river appears dark.  
 
The grassland and woodland were merged into 
one class because living vegetation appears as 
bright red in false colour composite. Thapa and 
Murayama [42] obtained similar low accuracy 
result and they discovered that unsupervised 
classification usually fails or overestimate the 
heterogeneity of landscapes, particularly in 
residential and suburban areas. The complexity 
of urban environment may be responsible for this 
as it compels the classifier to overestimate land 
use and land cover area. Both grassland and 
woodland are green, hence their spectral 
signature is similar. 
 
The result of the supervised classification yielded 
better accuracy than the unsupervised. For the 
colour infrared image which has a spatial 
resolution of 0.125m, its accuracy improved from 
67% (unsupervised) to 80% (supervised). Even 
after matching spectrally homogeneous classes, 
open space, motorway, railway, and commercial 
and residential buildings were still misclassified. 
Some of the residential and commercial houses 
were misclassified as railway and motorway. 
Railway lines are generally made from steel. 
Aluminum and steel are two other popular roofing 
materials. In some areas of the railway line, 
stones may also be used . Also, these materials 
may have similar spectral reflectance. Some 

open spaces were misclassified as motor way. 
This is because some of the open spaces are car 
parks which are tarred with similar materials 
used for the motor way. The underlying factor of 
this is “spectral resolution”. Price [43] believes 
that such spectral variability in the dataset results 
from urban or man-made features. He further 
suggested that more or different bands would be 
required to assess these surface types 
spectrally. Herold [44] discovered that even after 
using twenty-six different urban land cover 
classes and hyperspectral optical remote sensing 
data, certain land cover types still have similar 
spectral characteristics.  
 
Researchers have attempted to fuse multi-source 
remote sensing data with medium-resolution 
images. This improves the overall resolution, 
increases model accuracy, and makes change 
detection more noticeable [8].  Jia et al.[17]  
fused Landsat 8 Operating Land Imager (OLI) 
NDVI at 30m with MODIS NDVI at 250m. This 
method was proposed to improve land cover 
classification and it yielded a 4 per cent 
improvement in the overall classification 
accuracy compared to a single temporal Landsat 
data. Singh et al [45] demonstrated that the 
combination of LiDAR and Landsat data can lead 
to increased accuracy in discriminating 
heterogenous land cover over large urban 
regions. 
 
Xia et al. [18]  combined multi-source features 
from remote sensing data and geolocation 
datasets to extract information on large-scale 
urban areas using random forest classifier. The 
classification results were in good accordance 
with the urban boundaries however, the model 
revealed an obvious misclassification of the river 
and lake regions due to coarse resolution.   
 
The major finding here is that both supervised 
and unsupervised classification of remotely 
sensed images could not differentiate between 
car parks, roads, and buildings as their spectral 
signatures are the same due to similar 
construction materials. This can be attributed to 
the fact that land use type does not typically hold 
unique physical characteristics [46]. This 
emphasizes the need for ground truthing when 
using satellite images for urban land cover 
analysis especially when low resolution satellites 
are used at micro level. Therefore, ground 
truthing is very crucial and should be embarked 
upon for accurate verification of land cover. Xia 
et al. [18] proposed a systematic evaluation of 
the reliability of web-sourced GIS data. This can 
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be achieved by applying more remote sensing 
and GIS data to extract urban areas at a large 
scale particularly datasets with a finer spatial 
resolution. There has been an advancement in 
the capabilities of cloud-based computational 
platforms [46]. It allows analysis of land use land 
cover characteristics of the earth across a 
greater geographical and temporal scale. While 
land cover refers to the attributes of the earth 
land surface and its immediate subsurface, land 
use refers to the purpose for which humans 
exploit the land cover [47].  Remote sensing 
observations typically capture the unique 
reflectance characteristics of physical objects on 
earth, which makes most remote sensing 
applications focus on detecting and classifying 
the land cover characteristics of earth [46]. 
However, differentiating between different land 
use types remains challenging [46]. 
 

Very good spatial resolution images like the color 
infrared usually come at a very high cost and do 
not usually cover a large area, unlike the Landsat 
and DMC, which can cover an entire state or city 
and are usually free of charge. 
 

The statistical tests for the images also prove 
that the accuracy of urban land cover mapping is 
highly dependent on the spatial resolution of the 
sensor. The Chi Square test revealed that there 
is a strong relationship between the classified 
images and their sensors. The higher the spatial 
resolution of the sensor, the more detailed 
information can be derived from the satellite 
images and the better the accuracy assessment.  
Based on several literatures, it is clear that 
spatial resolution is the most important 
consideration when it comes to accurately 
mapping dense urban environments [48–50]. 
 

5. CONCLUSION 
 
Remote sensing of urban areas can be a difficult 
task as the remotely sensed data can only pick 
land cover types and land cover use. The 
researcher can specify the number of categories 
or classes in supervised classification. However, 
matching spectral classes is usually a problem 
as it only identifies spectrally homogenous 
classes within the data. It may be sometimes 
necessary to have several classes so that 
spectrally homogenous classes can further be 
separated into more classes. However, this can 
only be very effective if the spatial resolution of 
the sensors is good enough to map out urban 
details. The unsupervised classification aided in 
understanding the land cover structure and 
identifying homogenous clusters in the imagery.  

The colour infrared image is the most suitable for 
urban land cover analysis as the 
misclassifications are minimal compared to the 
other two and the features can be vividly 
recognized due to its spatial resolution.  
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