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Abstract

In this paper, I have introduced half-metric spaces on normed vector spaces over R or C, which
are similar to metric spaces by relaxing a few conditions of metric space.I have also introduced
even half-metric spaces,established some properties and discussed completeness in the context of
half-metric space and even half-metric space.
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1 Introduction

Metric space is an ordered pair (M,d) where M is a non empty set and d is metric on M. [1]
d(x, y) : MXM → R such that for any x, y, z ∈ M the following holds

1)d(x, y) ≥ 0

2)d(x, y) = d(y, x)

3)d(x, z) ≤ d(x, y) + d(y, z)

4)d(x, y) = 0 ⇐⇒ x = y

A normed vector space or normed space is a vector space over the real or complex numbers, on which
a norm is defined.A norm is a real-valued function defined on the vector space that is commonly
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denoted [2] [3] [4] as ∥.∥ which has the following properties:
for all vector x,y and scalar t

1)∥x∥ ≥ 0

2)∥x∥ = 0 ⇐⇒ x = 0

3)∥tx∥ = |t|∥x∥
4)∥x+ y∥ ≤ ∥x∥+ ∥y∥.

A metric (M,d) on a linear space is said to be translation invariant if

d(x+ a, y + a) = d(x, y)

for all x, y, a ∈ M [5].

A sequence x1, x2, ...xn is said be cauchy if for every postive real number ϵ > 0 there is a positive
Number N such that for all positive integers m,n > N, d(xm, xn) < ϵ.

A metric space (M,d) is complete if every cauchy sequence in M converges in M [6] [7] [8].

2 Main Result

Definition 2.1. A half-metric space on a vector space equipped with ∥.∥ over R or C is an ordered
pair (M,d) ,where M is a non empty set,∥.∥ is the norm and d is half-metric on M,if the following
holds,

d(x, y) : MXM → R such that for any x, y, z ∈ M the following holds

1)d(x, y) ≥ 0

2)d(x, y) = d(y, x)

3)d(x, z) ≤ d(x, y) + d(y, z)

4)d(0, y) = 0 ⇐⇒ y = 0

2.1 Example

(R, d) where,d(x, y) = |x2 − y2|, clearly d is half-metric on R.

Definition 2.2. A half-metric space is said to translation invariant if

d(x+ a, y + a) = d(x, y)

for all x, y, a ∈ M.

Definition 2.3. A sequence x1, x2, ...xn is said be cauchy if for every postive real number ϵ > 0
there is a positive Number N such that for all positive integers m,n > N, d(xm, xn) < ϵ ,where d
is half-metric.

Definition 2.4. A half-metric space (M,d) is complete if every cauchy sequence in M converges
in M.

Definition 2.5. A half-metric space is said to be even if for all x,y in M

d(x, y) = d(x,−y).
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2.2 Note

Metric spaces on vector spaces cannot be even half-metric spaces because d(x, x) = d(x,−x) only
for x = 0 but metric spaces on vector spaces are half-metric spaces.

2.3 Example

(R, d), where ,d(x, y) = |x2 − y2|, consider d(x,−y) = |x2 − (−y)2|, d(x,−y) = |x2 − y2| =⇒
d(x,−y) = d(x, y) for all x,y in R.

Proposition 2.1. If a half-metric space is even then it cannot be translation invariant.

Alternatively if a half-metric space is translation invariant then it cannot be even.

Proof. let (M,d) be even half-metric space. then for all x,y in M

d(x, y) = d(x,−y)

assume d is translation invariant,then for all x,y,c in M

d(x+ c, y + c) = d(x, y)

d(x+ c,−y + c) = d(x,−y)

implies

d(x+ c, y + c) = d(x+ c,−y + c)

for all c in M, let x = −c, y = c

d(0, 2c) = d(0, 0)

d(0, 2c) = 0

using properties of half-metric

2c = 0

c = 0

a contradiction because c was arbitrary, therefore even half-metric spaces cannot be translation
invariant.

2.4 Example

(R, d) be a half −metric space such that d(x, y) = |x|+ |y|, clearly it is an even half-metric space.
consider d(1 + 2, 2 + 2) = d(3, 4) = |3|+ |4| = 7
and d(1, 2) = |1|+ |2| = 3
d(1 + 2, 2 + 2) ̸= d(1, 2) therefore d is not translation invariant.

2.5 Example

(R, d) be a half −metric space such that, d(x, y) = |x|+ |y|+ |x||y| clearly it is an even half-metric
space on R, therefore,it is not translation invariant.
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2.6 Example

(R, d), d = |x− y|,clearly it is translation invariant,therefore it is not an even half-metric space.

Proposition 2.2. An even half-metric space is complete ⇐⇒ all cauchy sequence in that space
converge to zero.

Proof. Let (M,d) be complete even half-metric space, let xn be a cauchy sequence in M then

lim
n→∞

d(xn, x) = 0

because M is complete, =⇒ x ∈ M , then by definition of even half-metric space

lim
n→∞

d(xn,−x) = 0

=⇒ xn → x as n → ∞ and xn → −x as n → ∞

=⇒ x = 0

because limits are unique if they exist.

Conversely, let all cauchy sequence xn converge to zero in (M,d), since M is even half-metric space,
by definition of vector space, zero is in M. Hence (M,d) is complete.

2.7 Example

(R, d) such that
d(x, y) = |x|+ |y|

and xn be a cauchy sequence in R
i.e

lim
n,m→∞

d(xn, xm) = 0

=⇒
lim

n,m→∞
(|xn|+ |xm|) = 0

=⇒
xn → 0, xm → 0

as n,m → ∞ therefore (R, d) is complete even half-metric space.

2.8 Example

(R, d), d(x, y) = |x2 − y2|, consider

xn =

(
1 +

1

n

)n

xn is cauchy in R because

d(

(
1 +

1

n

)n

, e) < ϵ

for n > N , since d is even half -metric

d(

(
1 +

1

n

)n

,−e) < ϵ

for n > N
=⇒ xn → e and xn → −e

which is not possible,therefore xn is not convergent. =⇒ (R, d) is not complete.
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3 Conclusions

It is clear that all metric spaces on vector spaces are half-metric spaces but even half-metric spaces
are not metric spaces on vector spaces.By relaxing a few conditions of metric spaces we obtain
interesting results.In this article,I have defined half-metric spaces and even half-metric spaces for
vector spaces,given plenty of examples,discussed completeness,translation invariant,cauchy sequences
in context of half-metric spaces and even half-metric spcaces.
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