
World Journal of Mechanics, 2020, 10, 53-67 
https://www.scirp.org/journal/wjm 

ISSN Online: 2160-0503 
ISSN Print: 2160-049X 

 
DOI: 10.4236/wjm.2020.105005  May 29, 2020 53 World Journal of Mechanics 
 

 
 
 

Star Formation in Self-Gravitating Molecular 
Cloud: The Critical Mass and the Core  
Accretion Rate 

Gemechu M. Kumssa1,2,3, S. B. Tessema1,2 

1Astronomy and Astrophysics Research Division, Entoto Observatory and Research Center (EORC), Ethiopian Space Science and 
Technology Institute (ESSTI), Addis Ababa, Ethiopia 
2Addis Ababa University, Addis Ababa, Ethiopia 
3Department of Physics, College of Natural Sciences, Jimma University, Jimma, Ethiopia 

 
 
 

Abstract 
Understanding how stars form in molecular clouds is one of the ongoing re-
search areas in astrophysics. Star formation is the fundamental process to 
which our current understanding remains incomplete due to the complexity 
of the physics that drives their formation within molecular clouds. In this ar-
ticle theoretical modelling of the lowest possible mass of the cloud needed for 
collapse and the core accretion rate has been presented for the molecular 
cloud collapsing under its gravity. In many of previous studies the critical 
mass of star forming cloud under its gravity has been modelled using kinetic 
energy and gravitational potential energy. However, we test the effect of 
thermodynamic efficiency factor together with other physical processes in 
describing the critical mass, and controlling or triggering the rate of mass 
falling onto the central core. Assuming that, the ratio of radiation luminosity 
to gravitational energy released per unit time of the collapsing MC is less than 
unity. Following this conceptual framework we have formulated the critical 
mass and the core accretion rate of the self-gravitating molecular cloud. 
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1. Introduction 

The study of star formation provides important information to understand the 
process of planet formation and the evolution of galaxy. Since, the formation of 
stars and planets in molecular clouds is a crucial field of study in astronomy and 
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astrophysics. As stated by [1] molecular cloud (MC) is the dense and cool region 
in interstellar medium (ISM), and its size assumed to be ~0.1 pc to ~100 pc. It 
provides raw material for star and planet formation. However, how and why the 
cloud collapses to form star is another key question in astronomy. The bounda-
ries of MCs are determined using the transitions from molecular gas like H2 to 
the atomic gas commonly H [2] [3]. The number of particles per unit volume (n) 
of the densest parts of MC is approximated to 31000 cm−  [4], temperature of 
this densest region is 100 KT < . It is in this region where star formation is ac-
tively going on. Stars form over a wide mass range from 0.08M



 up to 150M


 
and beyond (see [5] [6]). In our case, we mainly focus on low and intermediate 
star forming critical mass of the cloud and its core accretion rate. 

As illustrated by [7] the majority of stars (~90%) are low mass stars with 
masses less than 0.8M



, whereas about 10% are intermediate-mass stars have 
masses between 0.8 and 8M



, where as stars with masses ( 8M M>
 ) are said to 

be massive stars, they are only about 1% of all stars. There is a big difference 
between massive star formation processes and low mass star formation 
processes. The peculiar property of high mass star formation is that the young 
star accretes mass even if it begun nuclear fusion. No one is entirely sure what 
the dominant and unavoidable pressure force in addition to gravity in contract-
ing MCs to star is another critical issue in astrophysics. As [8] and [9] explained 
that supersonic turbulence will dissipate on the free-fall time scale, and magnetic 
pressure cannot stop the collapse [10] [11]. So that the concept of star formation 
in a cloud contracting by its own gravity needs additional understanding with its 
thermodynamic properties as we thought. 

According to [12] [13] [14] cold MCs have been heated by the photons emit-
ted by high mass stars and inhibit the collapse of a cloud. On the other hand, 
[15] [16] explained super nova (SN) explosions and the HII region expansion 
collect the gas together and trigger star formation in galaxies. The effects of these 
feedbacks are important in regulating star formation in galaxies [17]. What if no 
external agents, the role of gravity in SF? The central core accretion rate is in the 
early collapse phase of MC. Thus, in this study we mainly focus on formulating 
another alternative of critical mass and the core accretion rate. 

As described by [1] pre-stellar core is the first collapsed region of the star 
forming MC. In the low star forming region the pre-stellar core mass is from 
~0.5M



 to 10M


, but the hydrostatic object found at the center of the core is 
termed as protostar. The hydrostatic core grows to star via accretion of the ma-
terial onto the central core from the envelope. Moreover, how the central core 
accretion rate can theoretically be explained is a crucial to theoretical astrophys-
ics, thus this paper aims to formulate equation of the core accretion based on the 
critical mass we modelled in our earlier paper [18]. 

On the other way, the mass infall rate of the central core has not yet been 
theoretically modelled based on the parent cloud property including thermody-
namic efficiency factor. Therefore, we model equation of core accretion rate of 
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the central core or very young protostar which is embedded in the center of in-
itially collapsing MC or pre-stellar core. The purpose of the study is: formulating 
critical mass (Jeans mass) of self-gravitating molecular cloud and mathematically 
formulating core accretion rate. Describe the hierarchy from fragmentation to 
star formation through invoking an efficiency factor   into equation of radia-
tion luminosity. The general method we apply is theoretical modelling followed 
by numerical calculation. 

Review of the Jeans Mass & Bonnor-Ebert Mass Scale 

The jeans mass scale and the Bonner-Ebert mass scale are the classic mass scales 
for the contraction of a gravitating MC. Jeans mass: is Minimum or critical mass 
that is necessary to initiate the spontaneous collapse of the cloud. We believe 
that stars form when a portion of a molecular cloud collapses gravitationally. 
Since this collapse is resisted by various things, and there is evidence for many 
molecular clouds that have not collapsed, it is clear that the collapse initiating 
star formation occurs only under some circumstances. Can we find a simple 
condition that tells us when a cloud becomes unstable to collapse? This question 
was answered in a very simple model by James Jeans, who showed that for a 
cloud of a given radius and temperature, there is a critical mass that is now 
called the Jeans mass. If it is exceeded, the cloud becomes unstable to collapse. 
The Jeans mass depends on the radius of the cloud, its temperature, and the av-
erage mass of the particles in the cloud. The Jeans mass is determined by asking 
when the magnitude of the gravitational potential energy exceeds the magnitude  

of the gas kinetic energy. It is given by 
1 23 2

5 3
4

c
J

H c

KT
M

G mµ ρ
  

=   
 π 

 where k is  

the Boltzmann constant, cT  the temperature, cρ  the density of the cloud, cR  
the radius of the cloud, G the gravitational constant, and Hm mµ =  the average 
mass of a gas particle. If the cloud’s mass exceeds this value, gravity can over-
come the gas kinetic energy and initiate collapse. 

Bonner-Ebert Mass Scale: is the maximum mass for an isothermal sphere em-
bedded in a pressurized medium in hydrostatic equilibrium (in the absence of 
magnetic fields and turbulence), the Bonnor-Ebert mass is given by  

( ) ( )
3 4

1 2 1 23 3
,

1.182 1.182th th
BE

o th o

M
G G P

σ σ

ρ
= =  where 2

,th o oP ρ σ=  is the surface  

pressure (Bonnor, 1956; Ebert, 1957). Clouds with c BEM M>  cannot be pre-
vented from collapsing by thermal pressure alone. 

Magnetic Filed Mass Scale: Magnetic fields alone cannot prevent gravitational 

collapse in clouds with cM Mφ>  is given by 1 2M C
GΦ Φ
Φ

=  where Φ  is the  

magnetic flux in the cloud, and CΦ  is a constant which depends on the confi-
guration of the magnetic field. Clouds with cM MΦ>  and cM MΦ<  are said 
to be magnetically supercritical and subcritical respectively. Apart from these 
classical models, in this paper, we formulate the critical mass with respect to ra-
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dius, temperature and the ratio of radiation luminosity to gravitational luminos-
ity of the collapsing cloud through reviewing our published paper (i.e. [18]). In 
addition we model core accretion rate in two ways. 

2. Basic Equations and Concepts 

In this section we describe gravitational potential energy of a spherical cloud, the 
released energy during collapse, gravitational energy released per free-fall time, 
and setting assumptions to derive relation between gravitational luminosity and 
radiation luminosity. 

2.1. Gravitational Potential Energy of a Spherical Cloud 

The total gravitational potential (binding) energy of a sphere cloud of uniform 
density is given by 

( )
0

dcM
g

GM r
E m

r
= −∫                       (1) 

where ( )M r  is the mass contained in radius r. The gravitational potential 
energy of a system is the energy required to assemble the mass by bringing mat-
ter from infinity to the point of interest. Substituting 2d 4 dcm r rρπ= , and  

3

3
4

c
c

c

M
R

ρ =
π

 Equation (1) becomes 

3

2 2 2 4
0 0

4
163 4 d
3

R R
g

G r
E r r G r r

r

ρ
ρ ρ

π
π

 
 
= π = − π−∫ ∫

 
Substituting ρ  we have 

2
2 2 516 3

15 5g
GME G R

R
ρ = −π= −                   (2) 

Therefore, a spherical cloud with mass cM , density cρ  and radius cR  has 
gravitational energy given by 

2
c

g
c

GM
E c

R
= −                          (3) 

where c is a constant depending on the cloud density. We choose the value of 
this constant either 3/5 or 1 when we assume spherical uniform density cloud or 
need to consider uncertainty respectively [18]. From the Virial theorem 

2 2 0g g kE U E E+ = + = , this indicates that gravitational energy and the internal 
energy are in balance means the MCs neither collapse nor expand. The total 
energy of the system is related to gravitational potential energy gE  by  

1 1
2 2tot g g g gE E U E E E= + = − = , it implies that the internal energy must increase  

as the gravitational energy goes to negative. The total energy ( totE ) is negative 
means the molecular cloud is bound and stable. Which must be negative as 
cloud is bound (i.e. 0gE < ), gravitational systems tend to do this very rapidly, a 
bound system that is not in virial equilibrium will change its configuration very 
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rapidly to get into virial equilibrium. 
This idea rests on the fact that the gravitational energy gE  has a negative 

sign, and it is a confining agent, while the internal energies (thermal, kinetic, or 
magnetic) are positive, and they are assumed to act as supporting agents against 
collapse. It is frequently described in the literature that if 2 2 0g g kE U E E+ = + < , 
the cloud must be contracting, while 2 2 0g g kE U E E+ = + >  implies that the  

cloud is expanding. For the MC to collapse 
2

g
k

E
E> . 

2.2. The Time Scale 

The characteristic time scale associated with contraction of self-gravitating mo-
lecular cloud is the free-fall time. The time scale of star formation under a 
self-gravitating cloud is often estimated by this time scale or the time it would 
take a cloud to collapse to a point in the absence of any other forces. By neglect-
ing pressure gradients, the free fall time for spherically symmetric homogeneous 
collapsing cloud with mass cM  and radius cR  is given by 

1
23

32ff
c

t
Gρ

 
 
 

π
=                         (4) 

where cρ  is the initial density of the molecular cloud under consideration. 

2.3. Assumptions and Approximations 

We choose the value of c in Equation (3) is 3/5 for a uniform density assumption 
and 1 otherwise. However, the density profile of the molecular cloud is more 
likely to be centrally peaked, so we suggested using a numerical factor of order 
unity to express the small uncertainty. When a cloud core is collapsing under its 
own gravity, half of its total gravitational energy is radiated away and half goes to 
internal energy according to the Virial theorem. However, we assume that the 
amount of gravitational energy released during the collapse is not completely 
(100%) liberated away in the form of radiation. Therefore, some part of the re-
leased energy may be trapped by other cosmic matter at the boundary without 
being involved in changing temperature of the collapsing cloud core. Due to this 
reason we impose a dimensionless thermodynamic factor   which we quantify 
it as 

rad

gf

L
L

=                            (5) 

where radL  is the radiation luminosity of the collapsing cloud at its effective 
temperature and gfL  is the gravitational luminosity in free-fall time. 

2.4. The Released Energy during Collapse 

The gravitational energy released when a cloud of radius cR  collapsed to the 
surface of a pre-stellar of radius coreR  (see [18]) is given by 
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2 2
c c

g
core c

GM GM
E

R R
 

∆ = − 
 

                     (6) 

2 1 1
g c

core c

E GM
R R
 

∆ = − 
 

                    (7) 

2
c

g
core

GM
E

R
∆ =                          (8) 

Here we assumed 1 1
cR
 . This implies the energy released is mainly dependent  

on the core radius, the radius of the core. However, when we consider the total 
gravitational energy released by the cloud of mass cM  is more sensitive to the 
parent cloud radius the gravitational energy is expressed as  

2
2 1 1 c

g c
c c

GM
E GM

R R R∞

 
∆ = − ≈ 

 
, therefore, we set out two different mathematical  

frameworks. Half of the energy described in Equation (8) is liberated according 
to the Virial theorem, thus we have 

21
2 2

c
grad g

core

GM
E E

R
= ∆ =                      (9) 

gradE  is read as the gravitational energy radiated away. 

2.5. Gravitational Energy Released per Free-Fall Time 

To undergo free fall the gravitational energy of the cloud has to dominate other 
forms of energy pressures opposing it. Remembering that the gravitational 
pressure is dominating the counteracting pressures and the MC is falling to the 
central region. Now we can calculate the luminosity due to gravity in-terms of 
the free fall time as 

gravitational energy radiated away
freefall time

grad
gf

ff

E
L

t
= =           (10) 

Thus using fft  in Equation (4), Equation (8) and Equation (10) we have 
1

2 3 2 22

3 2 2

3

3

1 2

1 2

1 22 2

3

32 32
2 3 2 3

31.8426
2 4

0.9003
2

c c c c
gf

core core

c

core

c c

core c

GM G G M
L

R R

G M M
R R

G M M
R R

ρ ρ   
π π

= =   
   

 =  
 

 
=  

 

π
            (11) 

After substituting the value of G and doing little manipulation gfL  is formu-
lated by [18] ad is given by 

1
5 2

17
3 23.0721 10 J sc

gf
c core

M
L

R R
−  

≈ ×  
 

                (12) 

where cM  and cR  are the mass and radius of the parent cloud respectively, gfL  
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gravitational luminosity and 

1
23

32ff
c

t
Gρ

 
 
 

π
= , 11 3 1 26.67 10 m kg sG − − −≈ × ⋅ ⋅  

( 8 3 1 26.67 10 cm g s− − −× ⋅ ⋅ ) is 3

3
4c

M
R

ρ
π

=  denotes the initial density of the cloud. 

From the general gravitational energy released Equation (11) becomes 
1

5 2
17

53.0721 10 J sc
gf

c

M
L

R
−  

≈ ×  
 

. Note that we have been using cR  for the parent  

cloud radius before fragmented into cores, and coreR  is the radius of the core 
after initial cloud fragmented or collapsed to pre-stellar core. If cloud cools 
enough, Jeans instability allows gravity to overtake thermal energy. The densest 
parts of the cloud become gravitationally unstable and fragmentation occurs. It 
is after this fragmentation coreR  has been assumed. For small initial cloud with 
very small Jeans mass the core radius becomes the radius of the pre-stellar core 
formed from the rapid collapse of the initial cloud. Thus there is a clear differ-
ence between cR  and coreR  in this paper. 

3. Results 
3.1. Theoretical Modelling of Critical Mass  

and Core Accretion Rate 

In this section we adopt the assumption and procedures which have been used in 
our previous paper (see [18]), and describe   as well as to obtain the initial 
mass of a cloud, thus 

2 44 core c

gf

R T
L
σπ

=                         (13) 

and remodel critical mass in two different ways to avoid some ambiguity. Where 
2 44rad core cL R Tσπ= , σ  is Stefan-Boltzmann’s constant, cT  is the cloud’s tem-

perature. Then from Equation (13) we have 
1

5 2
2 4 17

3 24 3.0721 10 c
core c

c core

M
R T

R R
σ −  

=π × ×  
 

             (14) 

implies 
3 22 4

17
5 2 4

3.0721 10
core c c core

c
R T R R

M
σ

−=
× ×

π
  

2 52 5 3 23 4

17

4
3.0721 10

core c c
c

R T R
M σ

−

  =   ×   

π
  

[ ]

[ ]

1 1
3 6 8 3 6 85 5

4 4
2 2 30

1
3 6 8 5

27
2

1.40 10 kg 1.40 10
2 10

7.00 10

c core c c core c
crt

c core c

R R T R R T MM

R R T
M−

     ≈ × ≈ ×     ×    

 
≈ ×  

 





 



   (15) 
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When we turn to the general method i.e. if the gravitational energy liberated is 
more influenced by the parent cloud radius we have  

1
9 8 5

4
2 301.40 10

2 10
c c

crt
R T MM

   ≈ ×    ×  



. Therefore, we set two solutions of the 

cloud mass as 

[ ]

[ ]

1
3 6 8 5

27
2

1
9 8 5

27
2

7.00 10 , if sensitive to .   (a)

7.00 10 , otherwise.   (b)

c core c
core

crt

c c

R R T
M R

M
R T

M

−

−


  ×    = 

   ×  
  









   (16) 

where 8 1 2 45.67 10 J s m Kσ − − − −= × ⋅ ⋅ ⋅ , As the rate of releasing gravitational 
energy per unit time is increasing the minimum mass required for collapse re-
duces. On the other hand, where there is no release of gravitational energy there 
is no collapse. Equation (16) shows large critical mass has large radius, and the  
smaller the radius of the cloud the smaller is its critical mass. Hence we consi-

dered 34 3
c

c
c

M
R

ρ =
π

, then from Equation (15). 

( )
1

3 3 6 8 5
4

2

4
1.40 10

3
c c c core cR R R Tρ  

= ×  
 

π
  

( )
1

3 6 8 5
4

3 2

31.40 10
4

c core c
c

c

R R T
R

ρ
 

= ×  
 π   

Thus 
1 56 8

3 3
2 123.342 10  kg mcore c

crt
c

R T
R

ρ − 
≈ × ⋅ 

 
               (17) 

The radius from Equation (15) is obtained as 

( )
2 5

3 5
4 6 5 8 51.40 10
c

c
core c

M
R

R T
=

×



 
leads to 

( )
5 3 2 3

5 34 2 8 31.40 10
c

c

core c

M
R

R T
=

×



 
rearranging this we have 

1
2 5 3

7
6 81.2297 10 pcc

crt
core c

M
R

R T
−  

≈ ×  
 


                 (18) 

From Equation (18) 

( )
1 4 5 8

5 84 6 8 3 81.40 10
c

c

core c

M
T

R R
=

×


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temperature of the critical mass is 
1

2 5 8

3 60.0026  Kc
c

c core

M
T

R R
 

≈  
 


                   (19) 

How the thermodynamic efficiency factor is governing the critical mass of 
self-gravitating cloud is displayed in Figure 1. Figures 1-4 indicate the total 
critical mass contained in the radii with the other physical parameters addressed 
in their captions. Since the Jeans mass is a minimum mass, the unstable collaps-
ing cloud could begin with a very large mass, may be even thousands of solar 
masses. So why, don’t we get such massive stars? There are a lot of reasons, but 
one is that as the density increases hugely, the temperature becomes very low, the 
radius reduces rapidly, and as the ratio of radiation to gravitational energy in-
creases. Thus the Jeans mass becomes smaller, and so large clouds will fragment. 
Final fragments will tend to be on the order of a solar mass. Thus, an initial mas-
sive collapsing cloud will fragment into many small collapsing protostars lead star 
cluster. For the diffuse HI cloud the critical mass is about thousands of solar mass, 
whereas molecular cloud core has critical mass of solar mass scale. 

 

 
Figure 1. Luminosity ratio (  ) vs critical mass. When a cloud of radius Rc ~1 pc-1.99 pc 
collapsed to Rcore ~0.0001 pc to 0.00109 pc in the run with indicated temperatures in the 
plot The plot is obtained from Equation (15). 

 

 
Figure 2. The formed core radius (  ) vs critical mass of the initial cloud. When a cloud 
of radius Rc ~1 pc - 1.99 pc collapsed to Rcore ~0.0001 pc to 0.00109 pc with indicated 
temperatures in the plot and 0.099 - 0.99= . The plot is obtained from Equation (15). 
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Figure 3. Radius of the newly formed core vs critical mass of the initial cloud. When the 
initial cloud radius Rc ~ runs from 1 pc - 1.99 pc collapsed to Rcore indicated in the plot, 
with running temperature ~ 10 -109 KcT  and 0.099 - 0.99=  for increasing. The plot 
is obtained from Equation (15). 

 

 
Figure 4. Cloud’s critical mass vs the ratio of its luminosities. When the initial cloud ra-
dius Rc ~ runs from 1 pc - 1.99 pc collapsed to Rcore indicated in the plot. When we see 
curves in this figure thermodynamic efficiency factor plays grate role in describing critical 
mass. 

3.2. The Core Accretion Rate 

It is the rate at which the central object (central core) gains mass from the in-
itially collapsing cloud. This mass infall rate depends on the properties of the 
minimum mass of the cloud required for collapse. When the cloud is collapsing 
the mass is falling onto the central core. This process depends on time and 
properties of the cloud. Thus keeping   constant and considering spherical ac-
cretion. Since for a roughly spherical gas cloud with a mass close to the Jeans 
mass we can estimate the average accretion rate by taking the derivative of the 
critical mass with respect to time as: 

( )
2 6 8 3 5 8 3 6 74

1
2 5 4 53 6 8

3 6 81.40 10 kg s
5

c core c c c core c core c core c c
core

c core c

R R T R R R T R R R T T
M

R R T
−

 + +×  = × ⋅
 
  

  




 (20) 

Hence 1 22 11 yr 6.3412 10 kg sM − −= × ⋅


, then Equation (20) in 1yrM −


 can 
be expressed as 

https://doi.org/10.4236/wjm.2020.105005


G. M. Kumssa, S. B. Tessema 
 

 
DOI: 10.4236/wjm.2020.105005 63 World Journal of Mechanics 
 

( )
2 6 8 3 5 8 3 6 74

22 2 5 4 53 6 8

3 6 81.4 10
6.3412 10 5

c core c c c core c core c core c c
core

c core c

R R T R R R T R R R T T
M

R R T

 + +×  = ×
 ×
  

  




 

Simplifying and using all conversion parameters the mass infall rate for the 
core radius dominating cases is 

( )
2 6 8 3 5 8 3 6 719

1
2 5 4 53 6 8

3 6 82.21 10 yr
5

c core c c c core c core c core c c
core

c core c

R R T R R R T R R R T T
M M

R R T

−
−

 + +×    ≈ ×   
  



  




 (21) 

Of course temperature cannot remain constant throughout the collapse 
process. In this case, we have a much more means to find the accretion rate; so 
that to simplify the changing temperature in time we describe as  

( )
d d d d d
d d d d d

c c core c c
c core core

core core core

T T R T T
T R v

t t R R R
= = = =  , where 

d
d

c

core

T
R

 is approx-

imated to 

c

core

T
R
δ
δ . Where ( )c cR v=  and ( )core coreR v=  is the radial infall veloc-

ity of matter in the core and parent cloud respectively. Thereafter we Let 
19

2 5

2.21 10χ
−×

=


 and have 

( )

2 6 8 3 5 8 3 6 7

1
4 53 6 8

3 6 8
yr

5

c
c core c c c core c core c core c core

core
core

c core c

TR R T R R R T R R R T R
R

M M
R R T

δ
δ

χ −

 + + 
   ≈   
  



  

  (22) 

simplifying this 

( )

2 6 8 3 5 7

1
4 53 6 8

3 2 3 4
yr

5

c
c core c c c core c core c core

core
core

c core c

TR R T R R R T R T R
R

M M
R R T

δ
δ

χ −

  
+ +  

    ≈   
 
  



 

  (23) 

where χ  is made constant for simplicity by making   constant, otherwise 
changing. Equations (20) to (23) are when radius of the core plays very great role 
in describing the collapsing cloud mass. Moreover, this expression can also be 
simplified, in the case that the collapsing cloud is more sensitive to the initial cloud  

radius. Thus from Equation (16b) we have 

1
9 8 5

4
2

d1.40 10
d

c c
core

R T
M

t

 
  = ×      




. As-

suming   as constant in the general sense we have 

( )

8 8 9 7

1
4 59 8

9 8
yr

5

c
c c c c c c

core
core

c c

TR T R R T R
R

M M
R T

δ
δ

χ −

 + 
   ≈   
  



 

           (24) 

So we have two equations of core accretion from Equations (23) & (24) collec-
tively written as 
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( )

( )

2 6 8 3 5 7

1
4 53 6 8

8 8 9 7

1
4 59 8

3 2 3 4
yr .  (a)

5

9 8
 yr .  (b)

5

c
c core c c c core c core c core

core

c core c

core

c
c c c c c c

core

c c

TR R T R R R T R T R
R

M
R R T

M
TR T R R T R

R
M

R T

δ
δ

χ

δ
δ

χ

−

−

   
+ +   

        
  
   ≈ 
  +  
       
   





 



 

 (25) 

We apply Equation (25a) if the effect of the core radius is more dominating 
than that of the parent MC and one can use Equation (25b) for the dominant 
case of the parent cloud radius. In this chapter we focus on the core dominating 
case. 

3.3. Numerical Calculation of Mass Infall Rate 

We assume cR  is different from coreR  and the life of the initial cloud and the 
core also different then we set ct  and coret  for the parent cloud and the core 
respectively. In this particular condition ct  runs from 107 - 108.04 yr, coret  runs 
from 105 - 107 yr, thus c c cR R t= , and core core coreR R t=

. Moreover, assuming 
isothermal collapse and keeping 10 KcT =  and 0.9= . The initial cloud hav-
ing radius 0.01 pccR =  collapsed in time to the core with reducing radius from 
0.00001 pc - 0.0000001 pc we plotted the figure below. 

Figure 5 shows the accretion rate of the central core is governed by the rate of 
collapse of the initial cloud, the change of the central core radius in time, 
free-fall time and the size of the core. As the free-fall time of the cloud increases 
the rate of mass in fall reduces in time. This implies that matter in the reservoir 
gets depleted as free-fall time becomes so long. In general the figure indicates the  

 

 
Figure 5. Numerically calculated core accretion rate with respect to different parameters. The 
plot is obtained from Equation (20). In general the curves of this figure show us how the radial 
flow supports the growth of acceptor. The rate of mass falling onto the central object reduces as 
time goes. 
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mass infall rate is not only a matter of the physical properties of the cloud but 
also the life time. 

4. Summary 

Current star formation models are successful in explaining a wide variety of ob-
served data, but remain incomplete. The star formation process in sgMC needs 
to be discussed within the context of the thermodynamic efficiency factor in ad-
dition to the initial properties (mass, density, radius, and temperature) of the 
parent cloud. From the results obtained and model, the following key conclu-
sions could be drawn: There is no one and an all-time feasible method of calcu-
lating critical mass of star-forming MC; methods vary according to the dynami-
cal process that involved in collapsing the cloud core. Identification of the prop-
erties of the star-forming environment is the priorities as a key precondition for 
determining the fundamental parameters in collapsing a cloud and forming the 
star. Thermodynamic efficiency factor of self-gravitating MC is an additional 
constraint in studying star formation in sgMC. Due to these reasons it cannot be 
ignored in describing the critical mass of the sgMC. 

The rate of mass infall onto the central core has been modelled in two ways, 
one when the accretion rate is more affected by the radius of the central star 
forming core, and two if the core accretion rate is more sensitive to the parent 
cloud’s radius. In both cases we have shown how the amount of matter from the 
parent cloud or envelope falling onto the star forming core reduces in time. 
Since the cloud life time is lower than the cloud free-fall time there will be no 
supply of matter to the central core from the envelope. Therefore, both free-fall 
time and the parent cloud life time, and other dynamical parameters play the 
crucial role in describing core growth rate as well as star formation rate. The 
method somehow is adequate to address the gap in studying star formation. 
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