
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20

Geo-spatial Information Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tgsi20

Phenology-based delineation of irrigated and rain-
fed paddy fields with Sentinel-2 imagery in Google
Earth Engine

Daniel Marc G. dela Torre, Jay Gao, Cate Macinnis-Ng & Yan Shi

To cite this article: Daniel Marc G. dela Torre, Jay Gao, Cate Macinnis-Ng & Yan Shi (2021)
Phenology-based delineation of irrigated and rain-fed paddy fields with Sentinel-2
imagery in Google Earth Engine, Geo-spatial Information Science, 24:4, 695-710, DOI:
10.1080/10095020.2021.1984183

To link to this article:  https://doi.org/10.1080/10095020.2021.1984183

© 2021 Wuhan University. Published by
Informa UK Limited, trading as Taylor &
Francis Group.

Published online: 06 Oct 2021.

Submit your article to this journal Article views: 2624

View related articles View Crossmark data

Citing articles: 5 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20
https://www.tandfonline.com/loi/tgsi20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10095020.2021.1984183
https://doi.org/10.1080/10095020.2021.1984183
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2021.1984183
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2021.1984183
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2021.1984183&domain=pdf&date_stamp=2021-10-06
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2021.1984183&domain=pdf&date_stamp=2021-10-06
https://www.tandfonline.com/doi/citedby/10.1080/10095020.2021.1984183#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10095020.2021.1984183#tabModule


Phenology-based delineation of irrigated and rain-fed paddy fields with 
Sentinel-2 imagery in Google Earth Engine
Daniel Marc G. dela Torre a, Jay Gao a, Cate Macinnis-Ng b and Yan Shi a

aSchool of Environment, University of Auckland, Auckland, New Zealand; bSchool of Biological Sciences, University of Auckland, Auckland, 
New Zealand

ABSTRACT
Paddy rice agriculture is practiced in both rain-fed and irrigated ecosystems in the Philippines. 
However, small farms are prevalent in the region, and current satellite-based mapping techniques 
do not distinguish between the two ecosystems at farm scales. This study developed an approach 
to rapidly map irrigated and rain-fed paddy rice in Iloilo, Philippines at 10 m resolutions using 
Google Earth Engine. This approach used an ensemble of classifiers based on time-series 
vegetation indices to produce dry and wet seasonal maps for the entire province. Results showed 
a predominance of rain-fed rice areas in both seasons, with irrigated rice making up only one- 
fourth of the total rice area. The overall accuracy was achieved at 68% for the dry season and 75% 
for the wet season based on ground-acquired points and very high-resolution imagery. The two 
types of paddies were classified at accuracies up to 87%. Furthermore, the land cover maps 
showed a strong agreement with the municipal statistics. The resultant maps complement 
current official statistics and demonstrate the prowess of phenology-based mapping to create 
paddy inventories in a timely manner to inform food security and agricultural policies.
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1. Introduction

The world population is projected to increase to 
9.77 billion by 2050 (UN-DESA 2017). A larger popula-
tion will impose a higher demand for food, particularly 
staples such as rice (Oryza sativa L.). Rice is the world’s 
most important food crop and is primarily grown for 
human consumption. It is cultivated chiefly in the low-
lands of developing nations in Asia (GRiSP 2013). Rice 
yield is affected by many factors, including seasonal and 
annual climate events such as flooding, typhoons, frost, 
dry spells, and drought, along with soil erosion and 
pestilence (IPCC 2013, 2018; Wassmann et al. 2009). 
Besides, rice yield is also affected by the manner of 
cultivations, such as rain-fed or irrigated. Thus, the accu-
rate rice yield estimation requires the mapping of rice 
crops into rain-fed and irrigated classes. Monitoring the 
seasonal changes to areas devoted to different rice eco-
systems is integral to ensure food security and sustainable 
development in years to come.

Crop yield statistics are routinely collected at var-
ious government levels but have long-standing limita-
tions. In the developing world, subjective methods 
such as eye estimation, expert assessment, and farmer 
interviews are used (FAO 2017), but these traditional 
methods are imprecise. Ground-based methods utiliz-
ing crop cuts or Global Positioning System-enabled 
devices can improve the quality of estimates, but costs 
and resources are significant limitations when data is 
routinely needed (FAO 2016; Kabir et al. 2016).

Space-borne satellite remote sensing addresses 
these limitations, offering comprehensive area cover-
age with frequent repeat observations. Imagery from 
these sensors provides a plethora of data detecting 
biophysical characteristics of rice such as biomass, 
water content, and photosynthetic activity (Kuenzer 
and Knauer 2013). Several rice-focused studies have 
used optical sensors such as SPOT-VGT, MODIS, 
AVHRR, and Landsat (Manjunath et al. 2015; Zhang 
et al. 2015; Guan et al. 2018; Thenkabail et al. 2007; 
Bachelet 1994). These sensors feature large swath 
widths, frequent observations, and long-term data 
records, which are ideal for crop mapping. However, 
the spatial resolution of these sensors range from 30 m 
to 1 km. This range is too coarse to effectively detect 
spatially complex rice environments, such as smaller 
farms that predominate rain-fed ecosystems (Koirala 
et al. 2014; Palis 2020; Adamopoulos and Restuccia 
2014). Furthermore, mixed pixels cause mapping 
accuracy to decline in coarse-resolution sensors as 
they contain spectral signals of multiple covers other 
than paddy fields (Okamoto and Fukuhara 1996). One 
solution is to use finer resolution images, such as 
WorldView and RapidEye (Wan and Chang 2019; 
Kim and Yeom 2014). However, these are costly to 
acquire and have longer gaps between repeated obser-
vations. Sensors with high temporal resolution allow 
accurate mapping of distinctive temporal profiles of 
rice and its flooding patterns (Liang et al. 2019; Zhang 
et al. 2015; Gumma et al. 2014). Recently, 
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constellations of satellites sought to fill this gap, nota-
bly the Copernicus Program’s twin Sentinel satellites. 
These have 10 m resolutions and 5-day repeat inter-
vals. Several studies have demonstrated the suitability 
of these sensors for rice mapping (Ferrant et al. 2017; 
Jin et al. 2017; Zhang et al. 2018; Son et al. 2020).

Mapping methods using dense time-series imagery 
are standard for analyzing rice distribution and yield 
(Shew and Ghosh 2019; Mosleh, Hassan, and 
Chowdhury 2015). Two problems persist with single- 
date optical imagery of rice areas: (1) frequent cloud 
cover and (2) highly dynamic plant cover throughout 
the growing season. Multi-date imagery solves this by 
tracking critical growth stages, while statistical techni-
ques can synthesize cloud-free datasets (Zhang et al. 
2015; Jin et al. 2016; Teluguntla et al. 2015). This 
approach exploits the unique phenology of rice. Rice 
is essentially a kind of vegetation, so it is no different 
from other vegetation if detected from a vegetation 
index. However, rice is unique because it has a short 
growth period, with distinctive stages of growth at 
which its spectral signature follows a definite pattern 
different from that of other vegetation. Most studies 
utilize the Normalized Difference Vegetation Index 
(NDVI), but it saturates at denser canopies with mod-
erate-to-high biomass (Gitelson 2004). Saturation 
affects the ability to detect temporal changes and 
monitor vegetation dynamics, leading to confusion 
of covers with similar growth patterns.

Researchers developed alternative indices to be 
more sensitive at higher biomass stages. The Green 
Chlorophyll Vegetation Index (GCVI) – was initially 
designed to separate soybeans from maize and was 
linearly correlated with chlorophyll concentration 
(Gitelson et al. 2005; Baret and Guyot 1991; Gitelson, 
Gritz, and Merzlyak 2003). GCVI was used to map 
irrigated croplands across the continental US, result-
ing in low mapping errors and bias (Ozdogan and 
Gutman 2008). Despite its simplicity and advantages, 
current literature rarely used it to map rice areas 
despite its superior ability to detect canopy chloro-
phyll and the prevalence of rain-fed/irrigated ecosys-
tems in rice agriculture (Guan et al. 2018; Zhang et al. 
2018). Another approach to rice mapping combines 
a vegetation index (VI) with a water index such as the 
Land Surface Water Index (LSWI) (Gao 1996; Xiao 
et al. 2002). A modified form of NDVI, this method 
effectively detects the flooding-transplanting signal of 
rice paddies. LSWI and NDVI have been jointly used 
for phenology-based classification of rice in several 
regions of Asia, albeit with varying success (Jin et al. 
2016; Xiao et al. 2005, 2006).

Over large areas, cloud-based platforms such as 
Google Earth Engine (GEE) have gained increased 
use as an effective platform for analyzing time-series 
data due to its vast catalog of analysis-ready geospatial 
datasets combined with high-performance computing 

capabilities (Gorelick et al. 2017). Several studies 
demonstrated GEE’s ability to map broad land covers, 
such as crop/non-crop or rice/non-rice areas, but 
none attempted to detect irrigated and rainfed rice in 
tropical regions using high-resolution imagery 
(Singha et al. 2019; Clauss et al. 2018; Lee et al. 1994; 
Guan et al. 2018; Zhang et al. 2018; Teluguntla et al. 
2018; Oliphant et al. 2019). Separating these two eco-
systems is essential as they have different crop and 
water management strategies. In particular, rainfed 
farms are particularly vulnerable to climate change, 
tend to have lower yields and smaller plot sizes 
(Koirala et al. 2014; Palis 2020; Adamopoulos and 
Restuccia 2014).

Successful mapping of rice ecosystems depends on 
the use of a suitable classification approach. The pre-
dominant method is using single classifiers such as 
a supervised or unsupervised classifier (Dong and 
Xiao 2016). However, traditional classifiers designed 
for spectral information may not be suitable for the 
phenology-based temporal approach to a complex 
environment such as tropical paddies. A solution to 
this is to combine the strengths of several classifiers at 
several stages for the mapping (Du et al. 2012). 
Additionally, knowledge-based approaches using 
information external to imagery such as irrigation 
canal networks or crop calendars can improve the 
mapped results (Ragettli, Herberz, and Siegfried 
2018). Nevertheless, their effectiveness in the mapping 
remains unexplored. There is a gap in the current 
literature in providing a timely and accurate differen-
tiation of the spatial extent of rain-fed and irrigated 
rice agriculture at a comprehensive areal coverage 
with a resolution that can detect smallholder farms.

Therefore, the overarching objective of this study 
was to investigate how effectively the use of spectral 
and temporal knowledge gathered from satellite ima-
gery and external knowledge can improve the map-
ping of irrigated and rain-fed rice in Iloilo Province, 
the Philippines. Specifically, our aims were to (1) 
investigate the vegetation index temporal profiles for 
different land covers in the study area, (2) map the two 
main rice ecosystems and quantify their areas and 
changes between seasons, and (3) assess the accuracy 
of the maps with field data and official statistics. 
Although this study was conducted in a single region 
and year, this time- and cost-effective methodology is 
envisioned to be adapted to more expansive areas and 
extended to multiple years.

2. Methodology

2.1. Study area

The study area is Iloilo, the largest of four provinces 
located on the island of Panay in the Western Visayas 
group of islands of the Philippines (Figure 1). It 
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extends from 10.47◦N to 11.65◦N and 122.01◦E to 
123.38◦E, covering a total land area of 5,079 km2 

(Iloilo PPDO. 2019). Its topography consists of flat 
plains, mountainous ranges, and rolling hills. One- 
third of the province is level plains are full of fertile 
agricultural land with extensive river systems. To the 
west lies the Central Panay Mountain Range. The 
highest point is Mount Baloy at 1,908 m. Loam is the 
predominant soil type in the province and is consid-
ered suitable for most crop types (Parida et al. 2008; 
Iloilo PPDO. 2019). Iloilo has a tropical monsoonal 
climate with two distinct seasons. The dry season 
occurs December–April, and the wet season lasts for 
the remaining months. Average monthly temperature 
ranges from 25.8 to 28.5◦C. Monthly precipitation 
ranges from a low of 27 mm in February to 346 mm 
in August (Iloilo PPDO. 2019).

The agricultural landscape of Iloilo is predominantly 
paddy rice, but other crops are present. Corn is found 
mainly on the hillsides or as a second crop in some 
areas, and sugarcane, primarily in the central munici-
palities. Perennial crops such as banana, coconut, and 
coffee are also prevalent in mountainous regions. Major 
paddy areas are located in the east and central sections 
of the province. Rain-fed and irrigated rice are the main 
rice ecosystems in Iloilo, with some upland rice. Rain- 
fed rice is dependent on seasonal rains and is typically 
planted once a year. Irrigation infrastructure is less 
prevalent in Iloilo, with most concentrated near river 
systems, such as the Jalaur River, but there are also 
small-scale or private irrigation systems. Areas with 
irrigation can plant rice twice a year. Upland rice pad-
dies with smaller plot sizes dominate the southern and 
western regions near the main mountain ranges. The 
main cropping season starts in June and lasts until the 
September harvests. The second cropping season 

typically lasts from October to January. In 2017, the 
province produced 937,268.72 MT of milled rice, 39% 
of which comprised wet season rain-fed rice, totaling 
363,899 MT (Philippine Statistics Authority 2018). 
Evergreen forests are primarily found in the mountai-
nous regions, while coastal areas to the west are lined 
with mangrove forests and fishponds. Iloilo City is the 
primary urban center in the central-west portion of the 
province.

2.2. Data used

The Sentinel-2 Level 1C data used in this study are the 
top-of-atmosphere (TOA) reflectance product, avail-
able from the GEE Data Catalog as “COPERNICUS/ 
S2”. From digital numbers, the image is radiometri-
cally corrected for radiances at TOA values. 
Corrections applied were dark signals, pixel response 
non-uniformity, crosstalk, interpolation of defective 
pixels, restoration of high spatial resolution bands, 
and spatial filtering for 60 m bands. The geometric 
correction was then applied using a Digital Elevation 
Model (DEM) to project imagery in cartographic 
coordinates. The imagery was then associated with 
pre-defined 100 km2 x 100 km2 tiles and resampled 
to the native resolution of each band (orthorectifica-
tion). Radiances were converted to TOA reflectance 
values at this point.

To coincide with the main growing seasons of 
rice of 2019 in the region and the timing of official 
harvest statistics surveys, we used data from 
October 1, 2018 to October 1, 2019. Four Sentinel- 
2A/B scenes covered the whole province. This num-
ber rose to 144 over the study period (Figure 2). All 
the images were cloud-masked using the in-built 
cloud mask band of Sentinel-2 Level 1C products, 

Figure 1. Location of the study area, the province of Iloilo. Names of municipalities of the province are given within the 
administrative boundaries, delineated by red borders. Elevation data shown is from ALOS World 3D (AW3D30) .
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QA60. This band contains information on the pre-
sence or absence of opaque clouds and cirrus clouds 
for each pixel. Clear pixels were selected in this 
instance. The shapefile from the Philippine 
Statistics Agency (PSA) provided the geographical 
bounds of Iloilo Province.

For ancillary data, we used the ALOS World 3D 
(AW3D30). We present a digital surface model (DSM) 
dataset with a horizontal resolution of 30 m (~1 arc- 
second). Spatial data from irrigation networks were 
acquired from the National Irrigation 
Administration – Region VI to assist in labeling clus-
ters from classification and validating the results.

2.3. Reference data and ground observations

A reference sample site database was created through 
a combination of fieldwork and high-resolution ima-
gery within GEE. Fieldwork was undertaken through-
out the study area from August to November 2019 
(Figure 3). A team of local officials and agricultural 
technicians visited 43 rice field plots in 18 municipali-
ties across the province and interviewed the farmer- 
owners of each farm. Plots were selected by agricultural 
officers who had expert knowledge of each farm’s repre-
sentativeness across their municipality. Data collected 
during the campaigns included: (1) geographic 

Figure 2. The scene footprints and number of observations in Iloilo Province from Sentinel-2A/B MSI for 2019.

Figure 3. Location of reference sites (n = 463) used in this study overlain on a false-color median composite Sentinel-2 image using 
Bands 2, 8, and 11. Reference sites consisted of (1) site visits with interviews to 43 farms and (2) only geographic coordinates with 
additional validation using a custom GEE app for 420 sites.
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coordinates of the plots using a Garmin GPSMAP 62s 
handheld unit, (2) rice crop type separated by rain-fed 
or irrigated rice, (3) crop planting and rotation sche-
dules, (4) farm area measured using GPS and reference 
fine-resolution imagery, and (5) geotagged photographs 
of the farm’s setting and condition.

An additional set of 420 points was collected 
across all municipalities in Iloilo using only GPS 
coordinates, together with information on the land 
cover type, presence of irrigation infrastructure, 
and geotagged photographs. The quality of these 
observations was assured with the assistance of 
a customized GEE application and Google Earth 
Pro’s Street View imagery. The custom application 
(Figure 4) graphed the temporal profile of the can-
didate location. Additional validation, as needed, 
was achieved through Street View. Points were 
excluded if they were misidentified, occupied 
a small area, or recently changed the land cover. 
Phenological profiles derived from these samples 
provided the ideal time series for each class, namely 
rain-fed rice, irrigated rice, non-rice crops, built-up 
/bare soil, forest/trees, and water bodies.

Statistics of rice cultivation area for 2019 were 
acquired from the Provincial Agricultural Office in 
Iloilo for all municipalities of the province (n = 44). 
Additional sub-national statistics were obtained from 
the Palay Production Survey of the Philippine 
Statistics Authority.

2.4. Image processing and classification

Rain-fed and irrigated rice paddies were mapped 
for the dry and wet cropping seasons of 2019 using 
a combination of classification methods at 10 m 
spatial resolution (Figure 5). Satellite images from 
Sentinel-2A/B were first merged into 10-day max-
imum value composites, from which NDVI and 
LSWI were then computed using Bands 3, 8, 8A, 

and 11 for the whole year (Table 1). Several tem-
poral and statistical subsets were created. For each 
seasonal map, unsupervised k-means clustering was 
applied. After all clusters were labeled into water, 
forest, and built-up areas, a random forest classifier 
was used to separate rice from the non-rice crop. 
Ancillary information, including elevation and irri-
gation infrastructure, was used to delineate irri-
gated from rain-fed rice. Finally, the produced 
rice map was assessed and validated for its accuracy 
through a constructed confusion matrix and com-
parison with the validation dataset and the muni-
cipal statistics.

2.5. Spectral indices and temporal compositing

Two spectral indices were derived from the multi- 
spectral bands of Sentinel-2 that take advantage of 
different optical radiative properties of the land sur-
face. With Sentinel-2, GCVI uses the near-infrared 
(B8) and green bands (B3) and is calculated as: 

GCVI ¼
B8

B3
� 1 (1) 

The land surface water index (LSWI) uses the red- 
edge (B8A) and shortwave infrared bands (B11), and its 
equation is given as: 

LSWI ¼
B8A � B11

B8A þ B11
(2) 

Several temporal composites were constructed 
from the original data stack, known in GEE as an 
ImageCollection, to track changes in the derived 
VIs. Decadal (10-day) maximum value composites 
(MVCs) were assembled to observe the phenologi-
cal profile with the least amount of cloud contam-
ination for each reference sample and to account 
for the variation in planting date. With the assis-
tance of the reference data from both in situ 

Figure 4. Custom Google Earth Engine app to aid in quality checking reference sample points.
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observations and a customized GEE app, the aver-
age temporal profile was extracted for each spectral 
index for non-rice, rain-fed rice, and irrigated rice 
cover types present inside the study area. Their 
statistics were then computed using GEE’s ee. 
Reduce methods, including the mean, median, 
maximum, minimum, and standard deviation. 
These were primarily for unsupervised classification 
of separate non-rice types.

2.6. Clustering analysis

The WEKA k-Means clustering method within GEE 
(ee.Clusterer.wekaKMeans) was used to partition 
the data into subgroups so that the sum of within- 
cluster variations is made as small as possible 
(James et al. 2013; Arthur and Vassilvitskii 2007). 
The target number of clusters was set to 30, while 
other parameters were kept at default values. Input 
features were statistical composites from temporal 
data of the two indices. We created two subsets for 
the dry and wet seasons from the original annual 
stack that covered the entire study dates. The dry 
season rice crop covered 6 months: 10–01–2018 to 
04–01–2019. The wet season stack ranged from 04– 
01-2019 to 10–01–2019. Afterward, we generated 
mean, median, and standard deviation composites 
of each stack for both spectral indices. Then, we 
used the percentile reducers within GEE to produce 
quantile composites at 5%, 25%, 50%, 75%, and 95% 
for GCVI and NDVI. The resulting multi- 
dimensional image array for each stack resulted 
in a 16-band statistical composite image. For 
instance, the wet season stack had the following 
bands: GCVI_mean, GCVI_median, GCVI_stdDev, 
GCVI_p5, GCVI_p25, GCVI_p50, GCVI_p75, 
GCVI_p95, LSWI_mean, LSWI_median, 
LSWI_stdDev, LSWI_p5, LSWI_p25 LSWI_p50, 
LSWI_p75, LSWI_p95. The final input feature for 
clustering was a combined wet and dry season stack 
that had 32 bands.

Table 1. Characteristics of spectral bands for Sentinel-2A (S2A) 
and Sentinel-2B (S2B).

Band 
Number Band Name

S2A 
Wavelength 
Range (nm)

S2B 
Wavelength 
Range (nm)

Spatial 
Resolution 

(m)

1 Coastal 
aerosol

432.2–453.2 431.8–452.8 60

2 Blue 459.4–525.4 459.1–525.1 10
3 Green 541.8–577.8 541.0–577.0 10
4 Red 649.1–680.1 649.5–680.5 10
5 Vegetation 

red edge
696.6–711.6 695.8–711.8 20

6 Vegetation 
red edge

733.0–748.0 731.6–746.6 20

7 Vegetation 
red edge

772.8–792.8 769.7–789.7 20

8 Near-infrared 779.8–885.8 780.0–886.0 10
8a Narrow near- 

infrared
854.2–875.2 853.0–875.0 20

9 Water vapor 935.1–955.1 932.7–953.7 60
10 Shortwave 

infrared – 
Cirrus

1358.0–1389.0 1361.9–1391.9 60

11 Shortwave 
infrared

1568.2–1659.2 1563.4–1657.4 20

12 Shortwave 
infrared

2114.9–2289.9 2093.2–2278.2 20

Figure 5. Flowchart of processing, classification, and post-classification refinements.
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The annual phenological profiles of GCVI and 
LSWI were extracted for the resulting clusters. 
A decision tree was constructed using thresholds 
determined from one of these indices, primarily 
GCVI, or its combination with LSWI from the ideal 
profiles from field surveys. The rulesets could quickly 
group similar clusters.

However, several clusters did not match the ideal 
temporal profiles. These were assessed against field 
validation points collected using the custom GEE 
application. The cluster map was overlaid on high- 
resolution Google Earth satellite imagery, annual sta-
tistical composites, and true-color Sentinel-2 imagery. 
These were then manually assigned to the correspond-
ing class.

After matching the temporal profile of each cluster 
with the reference profiles or through manual labeling, 
the classes were labeled as water, built-up/bare, forest/ 
trees, and cropland. The output was spatially filtered 
using the in-built morphological operators within 
GEE over a 3 × 3 weighted kernel to refine the classi-
fication results and reduce the salt-and-pepper effect.

2.7. Random forest classification of paddy fields

A machine learning method, random forest, was 
applied to the cropland cluster produced from the pre-
vious step. The algorithm is available within GEE as ee. 
Classifier.smileRandomForest. The reference dataset 
was split into 70% training (n = 336) and 30% validation 
samples (n = 143). Parameters for the classifier 
wawere00 trees and a minimum leaf population of 10, 
while others were set to default values. The resulting 
two classes were non-rice cropland and rice cropland.

2.8. Determination of irrigated and rain-fed areas

The rice cropland class was then further classified 
using a knowledge-based approach. The National 
Irrigation Administration provided irrigation shape-
files for the main and lateral canals. Elevation was 
taken from AW3D30. Slope gradients were computed 
from this dataset using the in-built ee.Terrain.slope 
algorithm in GEE.

A decision tree was constructed where irrigated rice 
fields were within a 1 km radius of the irrigation 
canals, at or below 50 m above sea level, and at 
a slope ≤3º. These thresholds were based on previous 
research and also on inspection of the maximum ele-
vation of the canal network dataset (Brouwer et al. 
1988; Xiao et al. 2005, 2006; Ghazaryan et al. 2018).

2.9. Accuracy assessment

Using the validation subset, confusion matrices and 
accuracy metrics were computed for the wet and dry 
season maps of rice/non-rice cropland and rain-fed 

/irrigated rice paddies. The identity of the selected 
pixels was then compared to that in the reference 
dataset, and the results were shown in a confusion 
matrix, from which four accuracy metrics were calcu-
lated, overall accuracy (OA), producer’s accuracy 
(PA), user’s accuracy (UA), and kappa coefficient. 
Additional accuracy indication was obtained by com-
paring the mapped area of rice areas with the provin-
cial government statistics of the same year. We 
determine percent difference from official statistics 
using Equation (3), while the percent area change 
between dry season and wet season area was computed 
using Equation (4): 

Percent Difference ¼
CA � OSj j

CAj jþ OSj j
2

� � � 100 (3) 

Percent Area Change ¼
WSarea � DSarea

DSarea
� 100 (4) 

where CA is the area of paddies classified from the 
Sentinel data and OS is the official statistical area of rice 
harvested from the Philippine Statistics Authority 
(PSA). WSarea is the harvested, wet season area, and 
DSarea is the harvested, dry season area obtained from 
the images.

3. Results

3.1. Phenological profiles of different classes

GCVI temporal patterns differed from each other 
among the mapped land covers (Figure 6). Built-up 
and water bodies had low GCVI values (<0.5) and 
low monthly variability. For non-crop vegetation 
areas, the highest GCVI values were from forested 
areas or trees. For crops and grasslands, seasonal 
variations were observable. Sugarcane and corn, 
which have a high biomass, can reach GCVI > 
3.0 at peak biomass and consequently decrease 
1.5–2.0 after harvest. Grassland has a monthly var-
iation of GCVI values is less acute during the dry 
season.

Rain-fed and irrigated rice also displays distinct 
monthly variations. The profiles both showed 
a double-cropping pattern, but low and high values 
were different due to various cultivars planted and the 
timing of planting. For the dry season, the GCVI peaks 
in December then declines sharply. According to 
interviews with farmers in the field, these changes 
coincide with the approximate timing of heading and 
harvest. Irrigated rice is planted later in December and 
harvested in the following February/March. For the 
wet season, rain-fed rice is grown in May/June and 
harvested in August/September, while irrigated rice 
starts in July/August. In Iloilo, farmers typically plant 
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90-day and 100-day varieties, and this is consistent 
with the length of the growing period observed from 
the time-series profiles.

3.2. Mapped rice paddy

For the dry and wet crop seasons spanning 
October 2018 to October 2019, our ensemble classifi-
cation approach identified six land-use types: forest/ 
trees, urban/bare, water, non-rice crops, rain-fed rice, 
and irrigated rice (Figure 7).

Table 2 summarizes area estimates for rice and 
non-rice, including changes from dry cropping season 
to the wet season. Dry season rice had an area of 
122,240 ha for rice and 59,051 ha for non-rice crops. 
Rice cover was composed of 79.07% rain-fed and 
20.93% irrigated. The wet season rice area was 
103,571 ha and the non-rice crop area of 86,482 ha, 
of which 75.72% was rainfed, while 24.28% was irri-
gated. Rice fields account for 25.92% of the province’s 
total land area in the dry season and 21.97% in the wet 
season. There is a 15.26% decrease in rice area from 
the dry season to the wet season, while non-rice crops 
increased by 46.45% during the same period.

Large, contiguous rice areas are located in the cen-
tral-eastern portion of Iloilo, around the periphery of 
the main urban area of Iloilo City (Figure 7). Irrigation 

facilities of the Philippine National Irrigation 
Administration (NIA) were also located primarily in 
this region. The north-eastern areas also have large 
rice areas switching between rice to non-rice crops in 
the wet season. Rain-fed rice plots are highly fragmen-
ted and located closer to areas with higher elevations 
and steeper slopes (Figure 8). The province’s central- 
western and southwestern areas were predominantly 
forested areas with much smaller plots of croplands 
close to the coast or near rivers.

Figure 9 shows the distribution of rice area per 
municipality. Municipalities with the most rice areas 
are located in the central-west to north-western por-
tions of the province, where the majority of the pro-
vince’s plains and the flat regions are. South-eastern 
and eastern municipalities and a few northernmost 
municipalities have the least amount of rice areas. 
These are predominantly forested areas with steeper 

Figure 6. Comparison of temporal profiles and phenology of monthly GCVI for several land cover types found in the study area.

Figure 7. Rice and non-rice crop areas for (a) dry season 2019 and (b) wet season.

Table 2. Crop classes for the dry (DS) and wet cropping 
seasons (WS) in Iloilo show total area counts and area changes 
between seasons.

Class
2019 DS  
Area (ha)

2019 WS  
Area (ha)

% Area Change  
from DS to WS

Irrigated Rice 25,589.41 25,150.20 −1.72%
Rain-fed Rice 96,658.62 78,437.18 −18.85%
Total Rice 122,240.20 103,571.03 −15.26%
Non-rice Crops 59,051.15 86,482.29 46.45%
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slopes, and more non-rice crops are planted here, such 
as sugarcane and corn. The rice area showed a general 
decreasing trend from dry to wet season in 2019.

Figure 10 shows areas across the province where 
changes to crop areas were observed. The most con-
siderable changes were the conversion of non-rice 
crop classes to rain-fed rice during the wet season. 
To a smaller extent, non-rice also changed to irrigated 
in the central-eastern area. There was a very low inci-
dence of switching from rice to non-rice crops in the 
same period.

3.3. Mapping accuracy achieved

Table 3 shows the confusion matrix of the mapped 
rain-fed rice, irrigated rice, and non-rice crop classes 
in the two seasons. The dry season crop had an overall 
accuracy of 68%, while the wet season crop was 75% 
accurate. The dry season rice kappa was 0.49, while the 
wet season was 0.60. Misclassification was commonly 
due to rain-fed pixels being erroneously classified as 
non-rice crops along with irrigated rice mistaken for 
rain-fed rice. When the two rice classes are combined, 

Figure 8. Maps of (a) elevation, (b) slope, and rice distribution for (c) dry season 2019 and (d) wet season 2019.

Figure 9. Distribution of rice area in Iloilo Province for dry season 2019 (left) and wet season 2019 (right) .
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the class accuracies mostly improved, as shown in 
Table 4. The overall accuracy improved to 76% (Dry 
season) and 83% (Wet season). The dry season kappa 

degraded slightly to 0.44, while improved for the wet 
season to 0.64. Rice class accuracies were high, ranging 
from 74% to 94%.

Figure 10. Map of class changes from the dry season crop to the wet season in 2019 for the three crop classes.

Table 3. Confusion matrix for the classified map and accuracy metrics for the three classes for the dry season 
(DS) and wet season (WS) crops.

Reference 
pixels

Classified pixels

Producers’ accuracy Users’ accuracyRain-fed rice Irrigated rice Non-rice crops Total

Dry Season
Rain-fed rice 151 23 77 251 86% 60%
Irrigated rice 9 54 5 68 70% 79%
Non-rice crops 16 0 73 89 47% 82%
Total 176 77 155 408
Overall accuracy 68%
Kappa statistic 0.4863
Wet Season
Rain-fed rice 149 24 40 213 80% 70%
Irrigated rice 9 53 4 66 67% 80%
Non-rice crops 29 2 129 160 75% 81%
Total 187 79 173 439
Overall accuracy 75%
Kappa statistic 0.6049

Table 4. Confusion matrix for the classified map and accuracy metrics for the combined rice classes and non- 
rice class for the dry season (DS) and wet season (WS) crops.

Reference 
pixels

Classified pixels

Producers’ accuracy Users’ accuracyRice Non-rice Total

Dry Season
Rice 237 82 319 74% 94%
Non-rice 16 73 89 82% 47%
Total 253 155 408
Overall accuracy 76%
Kappa statistic 0.44

Wet Season
Rice 235 44 279 84% 88%
Non-rice 31 129 160 81% 75%
Total 266 173 439
Overall accuracy 83%
Kappa statistic 0.64
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The classified maps had an annual harvest area of 
225,795 ha, against 252,625 ha in the official statistics 
for Iloilo from the Philippine Statistics Authority for 
2019. They had a difference of 11.21% between them. 
Dry season crop statistics were overestimated by 
42.44% (65,847 ha), while wet season crop was under-
estimated by 46.44% (39,033 ha).

We compared the annual rice area at the municipal 
level from official statistical sources with estimates 
from the RS-based map (Figure 11). The Pearson 
correlation coefficient was 0.75 and P < 0.001 
(n = 44), indicating a strong relationship and signifi-
cant correlation. RMSE was at 2,269 ha. The results 
show that the RS-based mapping is comparable to 
official government statistics at the sub-provincial 
scale.

4. Discussion

Our findings suggest that we can map irrigated and 
rain-fed rice with good accuracy and even better 
results when mapped at the rice and non-rice classes. 
Such maps would provide good reference data for 
assessing development and policy needs in the region, 
considering climate change and population growth 
issues. The design is easily transferable to similar 
areas with minimal reliance on ground reference 
data due to open data and open-source software.

One of the benefits of our approach was to use 
a temporal compositing method to generate seasonal 
statistics that served as the primary inputs. The 
Sentinel-2 constellation consists of two satellites with 
slightly different orbits; thus, the number of observa-
tions in each pixel’s raw time-series will be non- 
uniform, and image footprints can overlap 

(Figure 2). Composites such as mean, standard devia-
tion, and quantiles can reduce these potential causes of 
inaccuracies. Another is that optical time series can be 
noisy due to atmospheric variations and observation 
geometries. The compositing method over a temporal 
window essentially eliminated noisy pixels. In some 
instances, statistical modeling is employed to recon-
struct time-series, but in our study, where timing 
metrics were not vital, this is irrelevant (Hird and 
McDermid 2009). Based on this, mapping accuracy 
was aided by these statistical composites to reduce 
uncertainties from sensor characteristics and noise.

We used several knowledge bases to refine the 
supervised classification map. The presence and 
absence of irrigation are challenging to discern 
directly from imagery, particularly at large scales. 
Thus, ancillary information is used in addition to 
spectral information (Ozdogan et al. 2010). The super-
vised classification step yielded a rice and non-rice 
map. Still, with other data such as slope, elevation, 
and irrigation canal systems, it was possible to further 
separate rice into its rain-fed and irrigated ecosystems. 
For instance, an inspection in Google Earth of the 
irrigation network revealed the upper limit of eleva-
tion for irrigated rice at 50 m. Due to the need to 
periodically inundate paddies, the literature also sug-
gested an upper limit of 3° slope (Brouwer et al. 1988). 
However, we observe a large discrepancy between 
official statistics and our estimates primarily due to 
incomplete ancillary information on irrigation net-
works. Only the national irrigation system (NIS) 
extant in the province was available, which has 
a service area of 27,907 ha (National Irrigation 
Administration 2020). However, smaller-scale systems 
exist as well but with numerous service areas, such as 

Figure 11. Municipal-level comparison of rice area harvested for 2019 from official statistical estimates and remote sensing-based 
classification.

GEO-SPATIAL INFORMATION SCIENCE 705



communal irrigation systems (CIS) and private irriga-
tion systems (PIS). Their locations were unaccounted 
for in this study due to a lack of data. Aside from this, 
another reason for the lower estimates in remotely 
sensed data was due to the predominance of small 
paddy fields in the province, making it difficult for 
Sentinel-2 to map these accurately.

In light of these benefits, acquiring acceptable accu-
racy for the region is still challenging, as shown by our 
accuracy metrics. Overall accuracies were mainly at 
low to moderate levels, and even when aggregating to 
rice and non-rice, only a slight improvement was 
observed. Kappa was also modest in 0.49 (Dry season) 
and 0.60 (Wet season) for rain-fed/irrigated maps and 
not much improvement when aggregated to rice/non- 
rice. Despite this, our approach obtained an accuracy 
of up to 94% for rice and is in good agreement with 
official statistics at the municipal level with R2 = 0.75 
(Figure 11). However, some of the uncertainties here 
lie with municipal statistics. Overall accuracy was 
affected by lower-class accuracies for non-rice crops. 
The area is intercropped with corn and various vege-
tables, which may confuse the classifier as they may 
exhibit similar temporal profiles to rice. Studies using 
optical imagery tend to have lower accuracies for 
regions like the Philippines, which are frequently 
cloudy and have highly fragmented rice fields, as 
shown by the study of Xiao et al. (2006), which yielded 
an R2 of 0.6. Asilo et al. (2014) acquired an 87.2% 
overall accuracy (0.62 kappa) for a mainly irrigated 
and uniform rice area using MODIS. There were simi-
lar results of 69%–82% overall accuracy from a study 
on irrigated and rain-fed rice in South Asia using 
unsupervised ISODATA and ideal spectral signatures 
matching techniques with MODIS data (Gumma et al. 
2016). Manjunath et al. (2015) employed the same 
methods and SPOT-VGT data. Still, with different 
knowledge bases for ecosystem types; however, there 
agreement at the province-level for the Philippines 
was low (R2 = 0.38). Our results were able to obtain 
a reasonable degree of agreement at the sub-provincial 
(municipal) level. However, acquiring 100% accuracy 
is difficult due to the lack of irrigation data, cloud 
contamination, and small parcel sizes in Iloilo. In 
addition to these, interviews with the farmers revealed 
frequent changes to farming practices due to climate 
change, crop switching, or lack of capital.

We observed a higher rice area for the dry season 
than the wet season, contradicting official statistics. The 
weak performance during the dry season can be attrib-
uted mainly to confusion with non-rice crops, corro-
borated by the confusion matrices (Tables 3 and 
Tables 4). Due to the lack of water during the dry 
season, the cultivation area of rain-fed rice decreases, 
while non-rice crops’ area increases. This was not the 
case in the study. Since alternate crops are planted 
concurrently have similar durations to rice, this 

exacerbates confusion between the two. Additional 
data for more robust differentiation between rain-fed 
rice and non-rice crops during the dry season is 
needed, such as additional phenology metrics or alter-
native vegetation indices.

Given our results, we propose several approaches to 
improve accuracy. First, more variables can be used in 
addition to the current quantile and central tendency 
statistics. Other studies have used metrics such as start, 
end, or length of season and estimate dates of harvest 
and maturity (Guan et al. 2016; Jönsson and Eklundh 
2004; Boschetti et al. 2009). Second, sensor fusion has 
proven to help combine the strengths of different 
satellites. This study necessitated the use of composit-
ing to address persistent cloud contamination. 
Combining the rich spectral information of optical 
sensors with the cloud-penetrating abilities of syn-
thetic aperture radar (SAR) platforms can potentially 
produce better results (Park et al. 2018; Zhang et al. 
2018; Son et al. 2016).

Additionally, novel techniques using deep learning 
algorithms can utilize the spectral, spatial, and tem-
poral characteristics of multi-source imagery, includ-
ing optical, SAR, LiDAR, and even street view data. 
Several studies have shown its successful application 
to urban areas and crop-type delineation, potentially 
applicable to mapping the various rice ecosystems 
(Shao, Wu, and Li 2021; Shao et al. 2019; Shao, 
Zhang, and Wang 2017; Prins and Van Niekerk 
2020). Finally, the irrigation infrastructure covered 
was only NIS. As geospatial inventories of these infra-
structures become available, this would significantly 
improve estimates of irrigated and rain-fed areas. 
Also, climate or precipitation data can be used as an 
additional source of information. Due to the lack of 
granular data of this kind in the region, downscaled 
model outputs may also improve estimates.

5. Conclusions

Our study demonstrated the ability of a time-series 
technique within GEE to discriminate rice and non- 
rice areas in a province in the Philippines at 10 m 
spatial resolution. This reduces the burden of com-
puting resources on the user, which would otherwise 
be challenging to scale up to more extensive regions 
such as in the region-wide scopes. Our method used 
Sentinel 2A/B, various spectral indices, and temporal 
composites to achieve results comparable to SAR- 
based studies and improve upon optical-based stu-
dies. A distinctive feature of our study was the use of 
GCVI as the primary index for mapping rather than 
NDVI. The higher dynamic range of this approach 
enables easy detection of naturally dense vegetation 
such as forests and good separation of vegetation 
from water bodies and built-up areas. GCVI is typi-
cally used for yield or chlorophyll estimation. Still, its 
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features allow it to be effective for mapping, mainly 
when temporal composites are to be used, such as 
annual mean or median GCVI. Another novelty in 
our method was to use an ensemble classification 
approach using the strengths of both unsupervised, 
supervised, and knowledge-based methods. This 
study could map several land cover types and rain- 
fed and irrigated rice from this approach. We 
achieved a good correlation between our satellite- 
based estimates and official statistics at the municipal 
level with an R2 = 0.75. On the provincial scale, this 
study yielded an 11% deviation from official reports. 
As this method can be observed over the same period 
of official harvest surveys (dry and wet seasons), this 
can complement those. The relative ease of access 
and processing of data within a cloud computing 
platform makes it possible for our approach to be 
adapted to other areas or even scaled to more exten-
sive regions while providing time-series-based 
analyses.
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