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ABSTRACT

Aims: To fit a time series model to daily Naira-Pound exchange rate series.

Study Design: Seasonal Autoregressive Integrated Moving Average Model.

Place and Duration of Study: Department of Mathematics/Computer Science, Rivers
State University of Science and Technology, Nigeria, from December 2012 to March 2013.

Methodology: The correlogram of a non-seasonal difference of the 7-point difference of
the data was plotted. On the basis of that plot, a seasonal autoregressive integrated
moving average (0, 1, 1)x(0, 1, 1); model was proposed and fitted. This model was
compared with a suggestive ARIMA model with a view to establishing SARIMA supremacy.
Results: Seasonality of order 7 is evident from the analysis of the differences of the
seasonal differences of the original series. All three moving average parameters (i.e. for
lags 1, 7 and 8) of the SARIMA model are highly significant, their P-values being 0.0005,
0.0000 and 0.0001 respectively. The model agrees very closely with the observed data. Up
to 51% of variations in the data set are explained by the model. The residuals are observed
not to be correlated with each other. On the other hand only 8% of the variability in the data
set is accounted for by the ARIMA(1, 1, 1) model.

Conclusion: The SARIMA model more adequately represents the data set.

Keywords: Daily Naira-Pound exchange rates; SARIMA model; Nigeria.

*Corresponding author: E-mail: ettetuk@yahoo.com;




British Journal of Applied Science & Technology, 4(1): 222-234, 2014

1. INTRODUCTION

Time series modeling of foreign exchange rates has engaged the attention of many
researchers. A few of such researchers are Onasanya and Oyebimpe [1], Appiah and
Adetunde [2], Etuk [3,4,5], Etuk and Igbudu [6], etc. Many economic and financial time series
are known to be seasonal as well as volatile. Seasonal autoregressive integrated (SARIMA)
models were proposed by Box and Jenkins [7] to specifically model seasonal time series.
Such a modeling approach shall be used to explain the variation in the daily exchange rates
of the naira and the pound in this work. Etuk and Igbudu [6] fitted a (0, 1, 0)x(2, 1, 1)12
SARIMA model to the monthly rates.

SARIMA modeling has been discussed and applied extensively in the literature. A few of the
authors involved are Madsen [8], Surhatono [9], Saz [10]. Expectedly, this modeling
procedure compares favourably with other techniques and even often exhibits remarkable
advantage over them. The comparative advantage of the fitted SARIMA model over an
adequate ARIMA model shall be demonstrated.

2. MATERIALS AND METHODS

The data for this work are 113 daily Naira/Pound exchange rates from 8" December 2012 to
30" March 2013 published in the Nation newspaper in the website
www.thenationonlineng.net.

2.1 SARIMA Modelling

A stationary time series {Xg} is said to follow an autoregressive moving average model of
order p and q denoted by ARMA(p, q) if

Xi = a1 X1 = 02Xz = ... = OpXip = &+ Brers + Pogra + ...+ Pegrg (1)
or
A(L)X; = B(L)e (2)

where {gt} is a white noise process and the o’s and B’s are constants.
AL)=1-o4l-opl?- ... - apl”
B(L) =1+ Bl + Bol® + ... + BL"

and L is the backward shift operator defined by L*X, = X For stationarity and invertibility the
roots of A(L) = 0 and B(L) = 0 must all be outside the unit circle respectively.

Suppose {X;} is non-stationary and non-seasonal, Box and Jenkins [7] proposed that if it is
differenced a certain number of times it might become stationary. Let VX; be the first
difference of X;. Then V =1 — L. Let d be the minimum number of times necessary for VdXt
the d™ difference of {X} to be stationary. If {VdXt} follows an ARMA(p,q) model as in (1) we
say that {X;} follows an autoregressive integrated moving average model of orders p, d and
g, designated ARIMA(p, d, q).
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Suppose {X;} is seasonal with period s, Box and Jenkins[7] proposed that seasonal (i.e. s-
lag) differencing (combined with some non-seasonal differencing, if necessary) could render
the series stationary. Let d and D be the (minimum) degrees of non-seasonal and seasonal
differencing necessary, respectively, to make the series stationary. {Xg} is said to follow a (p,
d, q)x(P, D, Q)s seasonal autoregressive integrated moving average (SARIMA) model if

AL)D(L)VIVPX, = B(L)O(L e,

where d(L) =1+ 1L + L% + ... + ¢pL” and O(L) = 1 + O, + 0,L% + ... + 0oL are the
seasonal autoregressive and moving average operators respectively and the ¢'s and 6’s
constants such that stationarity and invertibility are guaranteed. Moreover V¢ = 1 - L°.

2.2 Model Estimation

2.2.1 Order Determination

Preliminary data analysis employs graphical and tabular methods. The differencing orders d
and D are determined as the observed minimum orders to which non-seasonal and seasonal
differencing are done for stationarity to be attained respectively. The time plots of the series
and the differences (if necessary) are the basis for estimation of the orders. Generally non-
seasonal differencing of the seasonal difference of the series yields a stationary series. That
is, d = D = 1. Non-stationarity shall be tested by the Augmented Dickey-Fuller unit root test.

If the autocorrelation function (ACF) of the differenced series has significant spikes at lags
which are multiples of s, then s is the period of seasonality. If this spike is negative it
suggests the existence of a seasonal moving average (MA) component. If positive it is an
indication of the involvement of a seasonal autoregressive (AR) component.

The nonseasonal AR order p is estimated as the cut-off lag of the partial autocorrelation
function (PACF). Its MA counterpart is estimated by the cut-off lag of the autocorrelation
function (ACF). Similarly P and Q, the seasonal AR and MA orders respectively are
estimated.

In particular a (0, 1, 1)x(0, 1, 1)s SARIMA model is suggestive if the ACF has significant lags
atlags 1, s and s+1, with the spikes at lags s-1 and s+1 comparable, Box and Jenkins [7].

2.2.2 Parameter Estimation

After order determination, the model parameters are estimated. Involvement of items of
white noise in the model calls for the use of non-linear optimization techniques. An initial
estimate of the parameter in question is usually made. This estimate is improved upon
sequentially by an iterative process until there is convergence to an acceptable estimate
depending on the specified error margin. Traditionally the least squares procedure, the
maximum likelihood procedure, the maximum entropy techniques are a few of the
approaches that are applicable.

Linear optimization algorithms have been proposed for ARMA modeling. For pure AR and
MA processes such linear techniques are in existence (see, for example Box and Jenkins [7]
,Oyetunji [11]). Attempts have been made to propose linear techniques for the mixed ARMA
models (see Etuk [12], for instance).
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However for this work the software Eviews which is based on the least error sum of squares
approach shall be used.

2.2.3 Diagnostic Checking

Fitted models need to be tested for goodness-of-fit to the data. Residuals of a fitted model
must be analyzed for that purpose. If the residuals are uncorrelated and normally distributed
with zero mean, this is an indication of model adequacy.

3. RESULTS AND DISCUSSION

The time plot of the series DNPER in Fig. 1 shows a generally downward trend. Non-
seasonal differencing yields a series DDNPER. The time-plot of DDNPER in Fig. 2 shows a
horizontal trend. The augmented Dickey-Fuller tests summarized in Table 1 reveal that
DNPER is non-stationary whereas DDNPER is stationary. Seasonal (i.e. 7-point)
differencing produces a series SDDNPER with a generally slightly negative trend (Fig. 3).
Nonseasonal differencing of SDDNPER yields the series DSDDNPER with a horizontal trend
(Fig. 4). The unit-root tests of Table 1 show that SDDNPER and DSDNPER are non-
stationary and stationary respectively especially at 1% level. The correlogram of DDNPER in
Fig. 5 shows a significant spike at lag 1 for both the ACF and the PACF suggesting an
ARIMA(1, 1, 1) model which is estimated as summarized in Table 2 as:

DDNPER;— 0.0639DDNPER,.; + 0.3551¢,1 = & 3)
(+0.3173) (+0.2980)

The correlogram of DSDDNPER in Fig. 6 shows an ACF with significant spikes at lags 1, 6
and 7. The negative sign of the autocorrelation at the significant lag 7 spike is an indication
of the involvement of a seasonal MA component, of order one. It is noted that though the

spike at lag 8 is not significant it is positive as that at lag 6. This is an evidence of a (0, 1,
1)x(0, 1, 1); SARIMA model. That means that DSDDNPER follows the model

DSDDNPERt =gt B181_1 + B781_7 + ngt_g
which is estimated in Table 3 as

DSDDNPER; = & - 0.2899¢,. - 0.8561¢,; + 0.3488¢.4 @)
(+0.0812)  (£0.0002) (+0.0838)
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— FIG 1: Time Plot of DNPER
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— FIG 2: Time Plot of DDNPER
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— FIG 3: Time Plot of SDDNPER
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— Fig 4:Time Plot of DSDDNPER
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Table 1. Augmented dickey fuller tests for non-stationarity

Series

Test
statistic

1% Critical
value

5% Critical 10% Critical

value

value

Conclusion

Dnper

ddnper
sddnper

dsddnper

-0.9371190

-5.686711
-3.125153

-5.148459

-3.4917

-3.4922
-3.4959

-3.4965

-2.8882

-2.8884
-2.8900

-2.8903

-2.5808

-2.5809
-2.5818

-2.5819

Non-
stationary
Stationary
Non-
statonary*
stationary

*Test significant at 5%level but non-significant at 1% level.

Autocorrelation

Partial Correlation

AC  PAC Q-5Stat

Prob

D00 =] O M b= L R =

-0.264 -0.264 3.0428
-0.013 -0.090 B.0637
-0.029 -0.062 8.1654

0.091 0.070 91434

-0.208 -0.182 14.283

0125 0.031 16151
0.015 0.043 16177
0.046 0.063 16.439
0.066 0142 16.980
0.034 0.063 17123

0127 -0.073 19174

0.021 -0.025 19.223

-0.033 -0.051 19.369
-0.166 -0.206 22950

0153 0.059 26.030
0.044 0.031 26.290
0.036 0.080 26467

-0.097 -0.053 27.754

0.140 0.071 30454

-0.062 0.086 30981
0102 -0.083 32427
0123 0178 34.582

0181 0.069 39257

-0.066 -0.020 39.896
-0.050 -0.156 40.268

0.065 0.017 40.892
0109 0115 42.684

-0.043 0106 42961
-0.076 -0.033 43856
-0.095 0124 45276

0.010 -0.013 45.292
0.030 -0.028 45438

0.079 0139 46.449

0107 0.057 48.324
0.040 0.008 48583

0.005
0.018
0.043
0.058
0.014
0.013
0.024
0.037
0.049
0.072
0.058
0.083
0.112
0.061
0.038
0.050
0.066
0.066
0.045
0.055
0.053
0.043
0.019
0.022
0.027
0.032
0.028
0.035
0.038
0.036
0.047
0.058
0.060
0.0583
0.063

Fig. 5. Correlogram of DDNPER
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Autocorrelation

Partial Carrelation

AC

PAC Q-5Stat

Prob

[T R s L T O B L R

10
1"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
i
32
33
34
35

-0.369
0.086
-0.110
0.195
-0.240
0.276
-0.398
0.106
0.020
0.056
0111
0.045
-0.067
-0.104
0.194
-0.096
0.059
-0.011
0.060
-0.102
0.036
0179
0.211
-0.101
-0.026
0.079
0.091
-0.046
-0.020
-0.080
-0.043
0.087
-0.059
0.082
-0.009

-0.369
-0.057
-0.113
0.139
-0.144
0171
-0.302
0171
0.056
-0.027
0.061
-0.133
-0.016
-0.321
0.088
0.008
0.091
0.078
0.113
-0.025
-0.348
-0.118
0167
0.096
-0.036
0.012
-0.007
-0.103
-0.114
-0.045
-0.038
-0.054
-0.048
0141
0.034

146590
155605
16.838
21.043
27537
36.179
54 369
55.665
h5.712
56.088
57.549
7.7
58.333
59.667
64352
65.504
65.949
65.964
66.434
G7.798
67.967
72298
78.402
79.831
79.926
a0.804
81.990
82.2594
82.354
83.301
83.577
g4.735
85.281
86.334
86.348

0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Fig. 6. Correlogram of DSDDNPER
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Table 2. ARIMA model estimation

Dependent Variable: DONPER

Method: Least Squares

Date: 07/22113 Time: 11:54
Sample(adjusted): 3 113
Included observations: 111 after adjusting endpoints
Convergence achieved after 11 iterations

Backcast: 2
Variable Coefficient  Std. Error  t-Statistic Prob.
AR(1) 0.068386  0.317327 0215508  0.829%8
MALT) -0.355051 0.297955 -1.191625  0.2360
R-squared 0.075855 Mean dependent var -0.082802
Adjusted R-squared 0.067376 5.D. dependent var 1.327694
S.E. of regression 1282186 Akaike info criterion 3.352864
Sum squared resid 1791962 Schwarz criterion 3.401684
Log likelihood -184.0839 F-statistic 8.946845
Durbin-\Watson stat 1.981287 Prob(F-statistic) 0.003437
Inverted AR Roots 07
Inverted MA Roots .36
Table 3. SARIMA model estimation
Dependent Variable: DSODNPER
Method: Least Squares
Date: 04/02/13 Time: 18:44
Sample(adjusted): 9 113
Included observations: 105 after adjusting endpoints
Convergence achieved after 16 iterations
Backcast: 18
Wariable Coefficient  Std. Error  t-Statistic Prob.
MA(T) -0.289903  0.081227 -3.568032  0.0005
MA(T) -0.856073  0.000179 4791.824  0.0000
MA(E) 0348778  0.083825  4.160ve0  0.0001
R-squared 0508658 Mean dependent var -0.010410
Adjusted R-squared 0.493024 5.D. dependent var 1.865805
S.E. of regression 1.320611 Akaike info criterion 3422221
Sum squared resid 177.8694  Schwarz criterion 3.498049
Log likelihood -176.6666  F-statistic 5279733
Durbin-Watson stat 1.978501  Prob(F-statistic) 0.000000
Inverted MA Roots 95 B9+ 7T B8 -TTi A
- 23+ 961 -23-96i - B9+ 43 -89 - 43i
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It is noteworthy that the  estimates are all statistically significant. As much as 51% of the
variation in the data is explained by the model (4). The p-value of the regression is as low as
.000000. There is close agreement between the fitted model and the data (Fig. 7). The
correlogram of the residuals in Fig. 8 shows that they are uncorrelated. From the residual
histogram in Fig. 9 it is evident that the probability curve of the residuals is dome-shaped
and nearly normally distributed with zero mean.

On the contrary the ARIMA model (3) has statistically non-significant coefficients, a R? value
as low as 8% as against 51% for the SARIMA model. The p-value of the regression is
.003437 higher than that of the SARIMA model. Even though with a p-value of .008581 the
hypothesis of a Gaussian SARIMA residual distribution is rejected (Fig. 9), the situation is
worse for the ARIMA model with a p-value of 0.005911. The inferiority of the ARIMA model
therefore is not in doubt.

6
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- -2
- -4
)
g ' T R
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—— Figure 7: Residual —— Actual —— Fitted
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Autocorrelation Partial Correlation

AC

PAC Q-5tat

Prob

(2= == B RL SR U FUR L Ty

26
27

34
35
36

0.010
0.021
-0.008
0.071
-0.164
0111
0.001
0.035
0.062
0.041
-0.102
-0.055
-0.075
-0.143
0.124
0.0356
0.043
-0.042
0.042
-0.045
-0.079
-0.189
0.081
-0.042
-0.027
0.107
0.1&7
-0.030
-0.126
-0.1359
-0.041
-0.011
-0.011
0.185
0.045
0.022

0.010
0.021
-0.008
0.0M
-0.166
0.118
0.002
0.025
0.089
-0.010
-0.071
-0.069
-0.075
-0.142
0.148
0.008
0.051
-0.038
-0.008
0.038
-0.103
0.172
0.085
-0.062
-0.075
0.147
0.116
0.043
-0.126
-0.190
0.017
-0.033
-0.071
0.237
-0.023
-0.017

0.0115
0.0614
0.0673
0.6328
3.6476
5.0497
5.04599
5.1908
56443
5.8393
7.0554
7.4574
8.1388
11.025
12.952
13.130
13.369
13.5692
13.825
14.143
14.968
19.796
20.693
20.932
21.037
22 668
26.228
26.362
28.720
31.615
31.870
31.889
31.908
KTl
37.646
ITT24

0.426
0.161
0.168
0.282
0.393
0.464
0.559
0.527
0.590
0.615
0.441
0.373
0.438
0.49%
0.557
0.612
0.657
0.664
0.407
0.415
0.463
0.518
0.480
0.342
0.388
0.324
0.247
0.280
0.325
0.372
0.201
0.227
0.262

Fig. 8. Correlogram of the SARIMA residuals
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12| Sample 9 113

10 Mean -0.000650
5 Median -0.088713
Maximum 4. 326464

Minimum -3.066808

64 Std. Dev. 1.307851
Skewness 0.562825

44 Kurtosis 3.952938
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Series: Residuals

Observations 105

Jarque-Bera  9.516405
Probability 0.008581

250 -125 000 125 250 3.75
Fig. 9. Histogram of the SARIMA residuals

4. CONCLUSION

It is observed that the SARIMA model is better able to capture the intrinsically seasonal
nature of the series DNPER than the ARIMA model. It may therefore be concluded that daily
Naira-Pound exchange rates are seasonal of one-week period and follow a (0, 1, 1)x(0, 1,
1); SARIMA model. This model has been shown to be relatively adequate.
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