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ABSTRACT 
 
Aims: To fit a time series model to daily Naira-Pound exchange rate series.  
Study Design: Seasonal Autoregressive Integrated Moving Average Model. 
Place and Duration of Study: Department of Mathematics/Computer Science, Rivers 
State University of Science and Technology, Nigeria, from December 2012 to March 2013. 
Methodology: The correlogram of a non-seasonal difference of the 7-point difference of 
the data was plotted. On the basis of that plot, a seasonal autoregressive integrated 
moving average (0, 1, 1)x(0, 1, 1)7 model was proposed and fitted. This model was 
compared with a suggestive ARIMA model with a view to establishing SARIMA supremacy. 
Results: Seasonality of order 7 is evident from the analysis of the differences of the 
seasonal differences of the original series. All three moving average parameters (i.e. for 
lags 1, 7 and 8) of the SARIMA model are highly significant, their P-values being 0.0005, 
0.0000 and 0.0001 respectively. The model agrees very closely with the observed data. Up 
to 51% of variations in the data set are explained by the model. The residuals are observed 
not to be correlated with each other. On the other hand only 8% of the variability in the data 
set is accounted for by the ARIMA(1, 1, 1) model. 
Conclusion: The SARIMA model more adequately represents the data set.  
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1. INTRODUCTION  
 
Time series modeling of foreign exchange rates has engaged the attention of many 
researchers. A few of such researchers are Onasanya and Oyebimpe [1], Appiah and 
Adetunde [2], Etuk [3,4,5], Etuk and Igbudu [6], etc. Many economic and financial time series 
are known to be seasonal as well as volatile. Seasonal autoregressive integrated (SARIMA) 
models were proposed by Box and Jenkins [7] to specifically model seasonal time series. 
Such a modeling approach shall be used to explain the variation in the daily exchange rates 
of the naira and the pound in this work. Etuk and Igbudu [6] fitted a (0, 1, 0)x(2, 1, 1)12 
SARIMA model to the monthly rates. 
 
SARIMA modeling has been discussed and applied extensively in the literature. A few of the 
authors involved are Madsen [8], Surhatono [9], Saz [10]. Expectedly, this modeling 
procedure compares favourably with other techniques and even often exhibits remarkable 
advantage over them. The comparative advantage of the fitted SARIMA model over an 
adequate ARIMA model shall be demonstrated. 
 
2. MATERIALS AND METHODS  
 
The data for this work are 113 daily Naira/Pound exchange rates from 8

th
 December 2012 to 

30
th
 March 2013 published in the Nation newspaper in the website 

www.thenationonlineng.net.  
 
2.1 SARIMA Modelling  
 
A stationary time series {Xt} is said to follow an autoregressive moving average model of 
order p and q denoted by ARMA(p, q) if  
 
Xt - 1Xt-1 - 2Xt-2 - … - pXt-p = t + 1t-1 + 2t-2 + … + qt-q    (1) 
 
or 
 
A(L)Xt = B(L)t          (2) 
 
where {t} is a white noise process and the ’s and ’s are constants.  
 
A(L) = 1 - 1L - 2L

2
 - … - PL

P
 

 
B(L) = 1 + 1L + 2L

2
 + … + qL

q
 

 
and L is the backward shift operator defined by L

k
Xt = Xt-k. For stationarity and invertibility the 

roots of A(L) = 0 and B(L) = 0 must all be outside the unit circle respectively. 
 
Suppose {Xt} is non-stationary and non-seasonal, Box and Jenkins [7] proposed that if it is 
differenced a certain number of times it might become stationary. Let Xt be the first 
difference of Xt. Then  = 1 – L. Let d be the minimum number of times necessary for 

d
Xt 

the d
th
 difference of {Xt} to be stationary.  If {

d
Xt} follows an ARMA(p,q) model as in (1) we 

say that {Xt} follows an autoregressive integrated moving average model of orders  p, d and 
q, designated ARIMA(p, d, q). 
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Suppose {Xt} is seasonal with period s, Box and Jenkins[7] proposed that seasonal (i.e. s-
lag) differencing (combined with some non-seasonal differencing, if necessary) could render 
the series stationary.  Let d and D be the (minimum) degrees of non-seasonal and seasonal 
differencing necessary, respectively, to make the series stationary. {Xt} is said to follow a (p, 
d, q)x(P, D, Q)s seasonal autoregressive integrated moving average (SARIMA) model if 
 

t
s

t
D
s

ds LLBXLLA )()()()(   

 
where (L) = 1 + 1L + 2L

2
 + … + PL

P
 and (L) = 1 + 1L + 2L

2
 + … + QL

Q
 are the 

seasonal autoregressive and moving average operators respectively and the ’s and ’s 
constants such that stationarity and invertibility are guaranteed. Moreover s = 1 - L

s
.
 
  

 
2.2 Model Estimation 
 
2.2.1 Order Determination 
 
Preliminary data analysis employs graphical and tabular methods. The differencing orders d 
and D are determined as the observed minimum orders to which non-seasonal and seasonal 
differencing are done for stationarity to be attained respectively. The time plots of the series 
and the differences (if necessary) are the basis for estimation of the orders. Generally non-
seasonal differencing of the seasonal difference of the series yields a stationary series. That 
is, d = D = 1. Non-stationarity shall be tested by the Augmented Dickey-Fuller unit root test. 
  
If the autocorrelation function (ACF) of the differenced series has significant spikes at lags 
which are multiples of s, then s is the period of seasonality. If this spike is negative it 
suggests the existence of a seasonal moving average (MA) component. If positive it is an 
indication of the involvement of a seasonal autoregressive (AR) component.  
 
The nonseasonal AR order p is estimated as the cut-off lag of the partial autocorrelation 
function (PACF). Its MA counterpart is estimated by the cut-off lag of the autocorrelation 
function (ACF). Similarly P and Q, the seasonal AR and MA orders respectively are 
estimated.  
 
In particular a (0, 1, 1)x(0, 1, 1)S SARIMA model is suggestive if the ACF has significant lags 
at lags 1, s and s+1, with the spikes at lags s-1 and s+1 comparable, Box and Jenkins [7].  
 
2.2.2 Parameter Estimation 
 
After order determination, the model parameters are estimated. Involvement of items of 
white noise in the model calls for the use of non-linear optimization techniques. An initial 
estimate of the parameter in question is usually made. This estimate is improved upon 
sequentially by an iterative process until there is convergence to an acceptable estimate 
depending on the specified error margin. Traditionally the least squares procedure, the 
maximum likelihood procedure, the maximum entropy techniques are a few of the 
approaches that are applicable.  
 
Linear optimization algorithms have been proposed for ARMA modeling. For pure AR and 
MA processes such linear techniques are in existence (see, for example Box and Jenkins [7] 
,Oyetunji [11]). Attempts have been made to propose linear techniques for the mixed ARMA 
models (see Etuk [12], for instance). 
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However for this work the software Eviews which is based on the least error sum of squares 
approach shall be used. 
 
2.2.3 Diagnostic Checking 
 
Fitted models need to be tested for goodness-of-fit to the data. Residuals of a fitted model 
must be analyzed for that purpose. If the residuals are uncorrelated and normally distributed 
with zero mean, this is an indication of model adequacy.  
  
3. RESULTS AND DISCUSSION 
 
The time plot of the series DNPER in Fig. 1 shows a generally downward trend. Non-
seasonal differencing yields a series DDNPER. The time-plot of DDNPER in Fig. 2 shows a 
horizontal trend. The augmented Dickey-Fuller tests summarized in Table 1 reveal that 
DNPER is non-stationary whereas DDNPER is stationary. Seasonal (i.e. 7-point) 
differencing produces a series SDDNPER with a generally slightly negative trend (Fig. 3). 
Nonseasonal differencing of SDDNPER yields the series DSDDNPER with a horizontal trend 
(Fig. 4). The unit-root tests of Table 1 show that SDDNPER and DSDNPER are non-
stationary and stationary respectively especially at 1% level. The correlogram of DDNPER in 
Fig. 5 shows a significant spike at lag 1 for both the ACF and the PACF suggesting an 
ARIMA(1, 1, 1) model which is estimated as summarized in Table 2 as: 
 
DDNPERt – 0.0639DDNPERt-1 + 0.3551t-1 =  t      (3)   
                 (0.3173)                 (0.2980) 
 
The correlogram of DSDDNPER in Fig. 6 shows an ACF with significant spikes at lags 1, 6 
and 7. The negative sign of the autocorrelation at the significant lag 7 spike is an indication 
of the involvement of a seasonal MA component, of order one. It is noted that though the 
spike at lag 8 is not significant it is positive as that at lag 6.  This is an evidence of a (0, 1, 
1)x(0, 1, 1)7 SARIMA model. That means that DSDDNPER follows the model 
 
DSDDNPERt = t + 1t-1 + 7t-7 + 8t-8 
 
which is estimated in Table 3 as 
 
DSDDNPERt = t - 0.2899t-1 - 0.8561t-7 + 0.3488t-8     (4) 
                            (0.0812)     (0.0002)     (0.0838) 
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Table 1. Augmented dickey fuller tests for non-stationarity 
 

Series Test 
statistic 

1% Critical 
value 

5% Critical 
value 

10% Critical 
value 

Conclusion 

Dnper 
 
ddnper 

-0.9371190 
 
-5.686711         

-3.4917 
 
-3.4922 

-2.8882 
 
-2.8884 

-2.5808 
 
-2.5809       

Non- 
stationary 
Stationary  

sddnper -3.125153 -3.4959 -2.8900 -2.5818 Non-
statonary*  

dsddnper -5.148459 -3.4965 -2.8903 -2.5819 stationary 
*Test significant at 5%level but non-significant at 1% level. 

 

 
 

Fig. 5. Correlogram of DDNPER 
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Fig. 6. Correlogram of DSDDNPER 
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Table 2. ARIMA model estimation 
 

 
 

Table 3. SARIMA model estimation 
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It is noteworthy that the  estimates are all statistically significant. As much as 51% of the 
variation in the data is explained by the model (4). The p-value of the regression is as low as 
.000000. There is close agreement between the fitted model and the data (Fig. 7). The 
correlogram of the residuals in Fig. 8 shows that they are uncorrelated. From the residual 
histogram in Fig. 9 it is evident that the probability curve of the residuals is dome-shaped 
and nearly normally distributed with zero mean.  
 
On the contrary the ARIMA model (3) has statistically non-significant coefficients, a R

2
 value 

as low as 8% as against 51% for the SARIMA model. The p-value of the regression is 
.003437 higher than that of the SARIMA model. Even though with a p-value of .008581 the 
hypothesis of a Gaussian SARIMA residual distribution is rejected (Fig. 9), the situation is 
worse for the ARIMA model with a p-value of 0.005911. The inferiority of the ARIMA model 
therefore is not in doubt. 
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Fig. 8. Correlogram of the SARIMA residuals 
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Fig. 9. Histogram of the SARIMA residuals 
 
4. CONCLUSION 
 
It is observed that the SARIMA model is better able to capture the intrinsically seasonal 
nature of the series DNPER than the ARIMA model. It may therefore be concluded that daily 
Naira-Pound exchange rates are seasonal of one-week period and follow a (0, 1, 1)x(0, 1, 
1)7 SARIMA model. This model has been shown to be relatively adequate. 
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