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Longitudinal change in lung function and
subsequent risks of cardiovascular events:
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Abstract

Background: Lung function is constantly changing over the life course. Although the relation of cross-sectional
lung function measure and adverse outcomes has been reported, data on longitudinal change and subsequent
cardiovascular (CV) events risks are scarce. Therefore, this study is to determine the association of longitudinal
change in lung function and subsequent cardiovascular risks.

Methods: This study analyzed the data from four prospective cohorts. Subjects with at least two lung function tests
were included. We calculated the rate of forced respiratory volume in 1 s (FEV1) and forced vital capacity (FVC)
decline for each subject and categorized them into quartiles. The primary outcome was CV events, defined as a
composite of coronary heart disease (CHD), chronic heart failure (CHF), stroke, and any CV death. Cox proportional
hazards regression and restricted cubic spline models were applied.

Results: The final sample comprised 12,899 participants (mean age 48.58 years; 43.61% male). Following an average
of 14.79 (10.69) years, 3950 CV events occurred. Compared with the highest FEV1 quartile (Q4), the multivariable
HRs for the lowest (Q1), 2nd (Q2), and 3rd quartiles (Q3) were 1.33 (95%CI 1.19, 1.49), 1.30 (1.16, 1.46), and 1.07 (0.95,
1.21), respectively. Likewise, compared with the reference quartile (Q4), the group that experienced a faster decline
in FVC had higher HRs for CV events (1.06 [95%CI 0.94–1.20] for Q3, 1.15 [1.02–1.30] for Q2, and 1.28 [1.14–1.44] for
Q1). The association remained robust across a series of sensitivity analyses and nearly all subgroups but was more
evident in subjects < 60 years.

Conclusions: We observed a monotonic increase in risks of CV events with a faster decline in FEV1 and FVC. These
findings emphasize the value of periodic evaluation of lung function and open new opportunities for disease
prevention.
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Background
The prevalence of impaired lung function is high, affect-
ing approximately 10–20% of the general population [1,
2]. It has been believed that poor lung function may be a
risk factor for a wide range of diseases [1, 3–12]. How-
ever, some researchers demonstrated that the import-
ance of lung function as a disease indicator is driven by
some other confounders [8, 13, 14]; the inverse relation-
ship of respiratory function to disease outcome is as-
cribed to an underlying link between lung function and
age [14].
It should be noted that lung function is constantly

changing across the life course—growing from birth to
teenager, plateauing in young adulthood, and declining
with advancing age [15]; thus, single-time measurement
of lung function with disease outcome was unable to de-
termine the precise association. Thereby, the importance
of a distinct course of lung function trajectories has been
increasingly emphasized [15–18].
However, few studies have reported the association of

longitudinal change in lung function and subsequent
risks of cardiovascular (CV) events. Most of the existing
studies are assessing the association between baseline
lung function and cardiovascular risks [3, 10, 19].
Among studies with a longitudinal evaluation of lung
function, studies are limited by short-term exposure dur-
ation [20], inadequate covariate adjustment [21, 22], or
only restricted to chronic obstructive pulmonary disease
(COPD) morbidity or mortality [23–25]. This may limit
the ability to quantify the actual relations of longitudinal
change in lung function to cardiovascular risk in the
general population.
In view of the rather limited information currently

available, we here performed a more comprehensive
evaluation of lung function change over a 10-year obser-
vation and quantified the subsequent risks of CV events
in four population-based cohort studies.

Methods
Study design and cohort
The present analysis was based on the data from 4
population-based cohort studies: (1) the CARDIA Study
(The Coronary Artery Risk Development in Young
Adults), (2) the CHS study (Cardiovascular Health
Study), (3) the FHS Study (Framingham Heart Study),
and (4) the FHS-OS Study (Framingham Offspring co-
hort). We obtained the cohort datasets from the NIH
Biologic Specimen and Data Repository Information Co-
ordinating Center (BioLINCC) [26, 27]. Details of the
design of each study are reported in Additional file 1.
Participants with at least two measurements of lung
function tests within the first 10 years (observation
period) were included. We excluded participants who
were lost to follow-up or sustaining an event of interest
during the observation period. After the last lung func-
tion measurement, 12,899 participants were included
and followed up thereafter (follow-up period). The study
flow is depicted in Fig. 1. The institutional review board
approved the individual studies from the original co-
horts, and all participants provided written informed
consent in each study.

Lung function assessment
Spirometry was performed with standardized equipment
per protocol within the individual cohort. Details of
measurements are provided in Additional file 1. FEV1
was assessed as the volume of gas exchange in the first
second of expiration. Forced vital capacity (FVC) was
assessed as the volume of gas forcefully exhaled after
maximal inspiratory effort. We calculated the rate or
slope for each subject to represent the annual change in
FEV1 or FVC. The slope or rate of change was the coef-
ficient computed from a simple linear regression model,
in which each subject’s lung function (FEV1 or FVC)
was considered as a dependent variable and the

Fig. 1 Description of the observation and follow-up periods of the study. CV, cardiovascular; FEV1, forced expiratory volume in one second; FVC,
forced vital capacity
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examination year as the independent one [22, 25]. The
coefficient represents the direction and magnitude of
lung function change. A positive value indicates an im-
provement in lung function while a negative one implies
a decline. On the basis of previous publications [3, 10,
19], subjects were then categorized by quartiles of FEV1
or FVC decline over the 10-year observation period.

Measurement of covariates
The covariates used for adjustment in this study were
baseline sociodemographic variables (age, sex, race, edu-
cation level, and marital status), past history (hyperten-
sion, diabetes mellitus, coronary heart disease, chronic
heart failure, and COPD), health behaviors (smoking sta-
tus, drinking status, physical activity, and body mass
index), and biomarkers (fasting serum glucose, total
cholesterol, high-density lipoprotein cholesterol, triglyc-
erides, and low-density lipoprotein cholesterol). Seated
or resting blood pressure was measured 3 times for each
subject, and the average of the 2nd and 3rd measure-
ments was used for the analysis. Height and body weight
were measured in light clothing, and body mass index
(BMI) was calculated by weight (kg) divided by the
square of height (m2). A history of hypertension was de-
fined by a ≥ 140mmHg systolic blood pressure (BP) and
≥ 90mmHg diastolic BP, self-reported hypertension, or
using anti-hypertensive medications. A history of dia-
betes mellitus was defined by a ≥ 126 mg/dl fasting
serum glucose, self-reported diabetes, or use of anti-
diabetic medications. A history of coronary heart disease
(CHD), chronic heart failure (CHF), and COPD was self-
reported or being diagnosed by a physician. The level of
physical activity was collected with self-report question-
naires and quantified using MET-min/week. Fasting
serum glucose, total cholesterol, high-density (HDL-C)
or low-density lipoprotein cholesterol (LDL-C), and tri-
glycerides were measured following a standardized
protocol. For covariates reported differently across the 4
cohorts, standardized categories were used to harmonize
data across the cohorts.

Ascertainment of the studied outcomes
Follow-up was started from the latest lung function
measurement within this study. All participants were
followed up to the event of interest, lost to follow-up, or
until censoring at the end date of the individual cohort.
All reported cases were systemically validated through
medical review and adjudicated using each cohort’s spe-
cific protocol (Additional file 1). The primary outcome
for our analysis was CV events, defined as a composite
of CHD, CHF, stroke, and any CV death. CHD was de-
fined as fatal or non-fatal myocardial infarction (MI), si-
lent MI, or coronary revascularization, based on
combinations of chest pain, electrocardiographic

evidence, and change of cardiac biomarkers. The diagno-
sis of CHF required a constellation of symptoms or
signs, along with a physician’s diagnosis of HF or an ob-
jective feature of pulmonary edema or ventricular dys-
function as described in previous publications [28, 29].
The secondary outcomes were CHD, CHF, and stroke.

Data analysis
The differences across quartiles were assessed using ana-
lysis of variance for continuous variables and chi-squared
tests for categorical variables. We reported age-adjusted
event rates per 1000 person-years within each quartile.
Non-adjusted or multivariable-adjusted Cox regression
models were used to estimate the hazard ratios (HRs) and
95% confidence intervals (CI) of all studied outcomes by
quartiles of lung function change, taking the highest quar-
tile (Q4) as the reference group. Covariates adjusted in the
multivariable model included age, sex, race, education
level, marital status, history of hypertension, diabetes,
CHD, CHF, COPD, smoking status, current alcoholic use,
physical activity, body mass index, fasting serum glucose,
total cholesterol, HDL-C, triglycerides, and LDL-C. The
proportional hazards assumption was checked, and no evi-
dence was suggestive of potential violation for any
exposure-outcome associations.
Missing data were handled using full information max-

imum likelihood under the missing-at-random assump-
tion in our main analysis. Missing values on baseline
covariates using Markov chain Monte Carlo multiple im-
putation method before their inclusion in the fully ad-
justed models. The results from 10 multiple imputation
cycles were combined together to draw a final output.
We further explored the association of annual lung

function change (as a continuous variable) and different
outcomes by graphing the restricted cubic spline curves.
In addition, Kaplan-Meier functions were used to illus-
trate the event-free survival of individual outcomes
across quartiles of lung function decline.
To mitigate potential bias, the following sensitivity

analyses were performed: (1) excluding participants with
missing data on baseline covariates and (2) restricting
the analysis to participants with no known history of
CHD, CHF, and COPD at baseline. Furthermore, sub-
group analyses were conducted to evaluate whether the
association differed by age (≥ 60 or < 60 years), sex (male
or female), race (white or non-white), body mass index
(normal weight, overweight, or obese), or smoking status
(never, former, or current smokers). Potential effect
modifications by these variables were examined by intro-
ducing a product term to the final model and deter-
mined by using likelihood ratio tests.
We did all these analyses with STATA/SE 15.1 (Stata-

Corp, College Station, TX, USA). All statistical tests
were two-sided with a significance threshold of 0.05.
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Results
Baseline characteristics of the study population
The average age (SD) of the 12,899 participants was
48.58 (21.15) years. 43.61% (5625/12,899) were men, and
78.30% (10,100/12,899) were self-identified as white.
Baseline characteristics, including sociodemographic in-
formation, health behaviors, and biomarkers, by quartiles
of lung function decline, and different cohorts are sum-
marized in Additional file 2: Table S1, Additional file 3:
Table S2, and Additional file 4: Table S3. All of them
had at least 2 measures of lung function, and 63% (8,
139/12,899) were with 3 times.
During the first 10 years of observation, the most rap-

idly declining quartile (Q1) lost an average of 101 (93)
ml of FEV1 and 113 (76) ml of FVC per year. Compared
to those with no or slow decline in lung function (Q4),
individuals in the group that experienced a faster decline
(Q3, Q2, and Q1) were older, more likely to be white,
less educated, and have higher body mass index. They
were also more likely to be married, smoke, and drink
alcohol.

Decline in FEV1 and the studied outcomes
During an average follow-up of 14.79 (10.69) years, CV
events were seen in 30.62% (3950/12,899) of the study
participants. The age-adjusted incidence rates of CV
events per 1000 person-years by quartiles of FEV1

decline (from Q1 to Q4) were 23.58 (95%CI 22.90,
24.27), 21.82 (1.17, 22.48), 19.40 (18.79, 20.03), and
19.42 (18.81, 20.05), respectively. Compared to subjects
assigned to the highest quartile (Q4), the crude hazard
ratios for the lowest (Q1), second (Q2), and third quar-
tile (Q3) were 1.95 (95%CI 1.74, 2.19), 2.42 (2.16, 2.71),
and 1.67 (1.48, 1.88), respectively. The associations were
attenuated after adjustment for baseline sociodemo-
graphic variables, past history, health behaviors, and bio-
markers but remained statistically significant in the
lowest (Q1) (HR 1.33 [95%CI 1.19, 1.49]) and second
lowest (Q2) quartiles (HR 1.30 [1.16,1.46]). The associ-
ation patterns were identical in the analysis of secondary
outcomes, the results of which are provided in Table 1.

Decline in FVC and the studied outcomes
Similarly, the age-adjusted incidence rates of CV events
by quartiles of FVC decline (from Q1 to Q4) were 26.68
(95%CI 25.97, 27.42), 20.41 (19.77, 21.05), 19.01 (18.40,
19.63), and 18.15 (17.56, 18.76) per 1000 person-years,
respectively. Compared with the reference group (Q4),
the group that experienced a faster decline in FVC had
significantly higher crude HRs for cardiovascular events
(1.47 [95%CI 1.31,1.66] for Q3, 2.21 [1.97-2.47] for Q2,
and 2.72 [2.43-3.04] for Q1). Following covariate adjust-
ment, the HRs were attenuated to 1.06 (95%CI 0.94–
1.20), 1.15 (1.02–1.30), and 1.28 (1.14–1.44) respectively

Table 1 Hazard ratio (95% confidence intervals) of the studied outcomes with quartiles of FEV1 and FVC decline

Studied outcomes Model Q1 Q2 Q3 Q4

FEV1 decline

Cardiovascular events Non-adjusted 1.95 (1.74, 2.19) 2.42 (2.16, 2.71) 1.67 (1.48, 1.88) Reference

Adjusted 1.33 (1.19, 1.49) 1.30 (1.16, 1.46) 1.07 (0.95, 1.21) Reference

Coronary heart disease Non-adjusted 2.05 (1.72, 2.44) 2.05 (1.71, 2.45) 1.67 (1.39, 2.00) Reference

Adjusted 1.38 (1.16, 1.65) 1.08 (0.90, 1.29) 1.04 (0.86, 1.26) Reference

Chronic heart failure Non-adjusted 2.02 (1.72, 2.36) 2.53 (2.17, 2.96) 1.98 (1.69, 2.33) Reference

Adjusted 1.47 (1.25, 1.73) 1.39 (1.19, 1.63) 1.33 (1.13, 1.56) Reference

Stroke Non-adjusted 1.94 (1.60, 2.36) 2.49 (2.06, 3.01) 1.65 (1.35, 2.02) Reference

Adjusted 1.35 (1.11, 1.64) 1.34 (1.10, 1.62) 1.08 (0.88, 1.33) Reference

FVC decline

Cardiovascular events Non-adjusted 2.72 (2.43, 3.04) 2.21 (1.97, 2.47) 1.47 (1.31, 1.66) Reference

Adjusted 1.28 (1.14, 1.44) 1.15 (1.02, 1.30) 1.06 (0.94, 1.20) Reference

Coronary heart disease Non-adjusted 2.89 (2.41, 3.46) 2.42 (2.01, 2.90) 1.74 (1.44, 2.10) Reference

Adjusted 1.45 (1.20, 1.75) 1.33 (1.10, 1.61) 1.25 (1.03, 1.51) Reference

Chronic heart failure Non-adjusted 3.22 (2.77, 3.75) 2.45 (2.10, 2.86) 1.43 (1.21, 1.69) Reference

Adjusted 1.35 (1.15, 1.58) 1.21 (1.03, 1.42) 1.03 (0.87, 1.22) Reference

Stroke Non-adjusted 2.67 (2.22, 3.22) 2.23 (1.85, 2.69) 1.25 (1.02, 1.53) Reference

Adjusted 1.28 (1.06, 1.56) 1.19 (0.98, 1.45) 0.94 (0.77, 1.16) Reference

Adjusted model: adjusted for age, sex, race, education level, marital status, history of hypertension, diabetes, coronary heart disease, chronic heart failure, chronic
obstructive pulmonary disease, smoking status, current alcoholic use, physical activity, body mass index, fasting serum glucose, total cholesterol, high-density
lipoprotein cholesterol, triglycerides, and low-density lipoprotein cholesterol
FEV1 forced expiratory volume in one second, FVC forced vital capacity

Cheng et al. BMC Medicine          (2021) 19:153 Page 4 of 10



for the third (Q3), second (Q2), and first (Q1) quartiles.
A similar pattern of association was observed for the
secondary outcomes (Table 1).

Dose-response relationship and Kaplan-Meier survival
analysis
Similar associations were noted in the dose-response
analysis, when modeling the longitudinal change in
FEV1 and FVC as continuous variables. Figure 2A and B
depict a monotonic increase in hazards of different out-
comes with a faster decline in FEV1 and FVC. Further-
more, our unadjusted Kaplan-Meier results, grouped by
quartiles of FEV1 (Fig. 3) and FVC (Fig. 4) decline, sug-
gest a graded increased risk of CV events, CHD, CHF
and stroke, with the lowest event-free survival observed
in the lowest quartile (the most rapidly declining
quartile).

Stratification and sensitivity analysis
The findings were generally consistent in the stratifica-
tion and sensitivity analyses. No interaction effects by
sex, race, BMI, and smoking status were detected for the

association between quartiles of FEV1 or FVC decline
and the studied outcomes (Table 2 for the primary out-
come and Additional file 5: Table S4, Additional file 6:
Table S5 for the secondary outcomes). Age did signifi-
cantly modify the relationship between lung function de-
cline and the studied outcomes (P for interaction <
0.05), such that the associations with FEV1 or FVC de-
cline were more evident in subjects younger than 60
years old. As for the sensitivity analyses, the associations
were much the same when excluding participants with
missing data on baseline covariates (Additional file 7:
Table S6) or restricting the analysis to subjects with no
known history of CHD, CHF, and COPD at baseline
(Additional file 8: Table S7).

Discussion
In this large population-based study, we showed a
monotonic increase in risks of CV events, CHD, CHF,
and stroke in subjects with a faster decline in lung func-
tion. The inverse association was independent of a series
of socio-demographical factors and persisted after ad-
justment for traditional cardiovascular risk factors. Also,
these findings were generally robust across sex, race,
BMI, and smoking status but more evident in subjects
younger than 60 years old.

Comparisons with other studies
The importance of lung function decline is initially rec-
ognized in COPD populations [30, 31]. As demonstrated
by Fletcher and some other researchers, COPD patients
could experience different patterns of lung function tra-
jectories, which were closely related to respiratory and
all-cause mortality [16–18, 30, 31]. Since then, the im-
pact of lung function decline on different disease out-
comes is increasingly emphasized, even in the general
population with normal or near-normal baseline lung
function [20, 21, 23, 24, 32].
As expected, we found a graded relationship between

quartiles of lung function decline and cardiovascular
risks, which is consistent with the scarce existing data. It
is been reported in the Baltimore Longitudinal Study of
Aging (BLSA) that cardiac mortality generally increased
with increasing quintiles of FEV1 [21]. Likewise, using
data from the ARIC cohort, Odilson and colleagues re-
ported a 14–34% increased risk of cardiovascular dis-
eases in those with the fastest decline (120 ml/year) [20].
However, most of these investigations were based on a
relatively short observation period of 3–4 years and
failed to adjust factors associated with rapid lung func-
tion decline (i.e., alcohol consumption or education
level) [22, 25, 33]. Our data complement these findings,
making use of at least 2 measurements of lung function
over a 10-year observation period and with a subsequent
follow-up of 15 years. Additionally, the consistency of

Fig. 2 Dose-response relationship between the annual change in
FEV1 (A) and FVC (B) and subsequent risks of the studied outcomes.
The curves (solid or dotted lines) are plotted using restricted cubic
splines and presented together with 95% confidence intervals
(corresponding shaded area)
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Fig. 3 Kaplan-Meier event-free survival curves by quartiles of FEV1 decline. A Cardiovascular event-free survival curves by quartiles of FEV1
decline. B Coronary heart disease-free survival curves by quartiles of FEV1 decline. C Chronic heart failure-free survival curves by quartiles of FEV1
decline. D Stroke-free survival curves by quartiles of FEV1 decline

Fig. 4 Kaplan-Meier event-free survival curves by quartiles of FVC decline. A Cardiovascular event-free survival curves by quartiles of FVC decline.
B Coronary heart disease-free survival curves by quartiles of FVC decline. C Chronic heart failure-free survival curves by quartiles of FVC decline. D
Stroke-free survival curves by quartiles of FVC decline
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our findings in a dose-response analysis further con-
firmed the effect of lung function decline on the studied
outcomes.
Quantitatively, our results appeared to differ from the

existing data. It has been suggested that lung function
declines with advancing age at approximately 23–32ml/

year for FEV1 and 14–30 ml/year for FVC in healthy,
never-smoking subjects [15, 21]. However, in the current
study, individuals in the second lowest quartile of FEV1
decline (Q2)—with an average decline of 37 ml per
year—have already had at least 28% increased risks of
cardiovascular events as compared with those in the

Table 2 Hazard ratios (95%CIs) of cardiovascular events with quartiles of FEV1 and FVC decline stratified by predefined subgroups

Q1 Q2 Q3 Q4 P for interaction

FEV1 decline

Age, years

< 60 1.36 (1.10, 1.67) 1.25 (1.01, 1.56) 0.86 (0.68, 1.08) Reference < 0.001

≥ 60 1.23 (1.07, 1.42) 1.24 (1.08, 1.43) 1.12 (0.97, 1.30) Reference

Sex

Women 1.20 (1.03, 1.41) 1.21 (1.04, 1.40) 0.98 (0.84, 1.14) Reference 0.50

Men 1.49 (1.25, 1.77) 1.41 (1.18, 1.70) 1.17 (0.97, 1.42) Reference

Race

Non-white 1.61 (1.21, 2.14) 1.07 (0.74, 1.54) 1.21 (0.86, 1.71) Reference 0.95

White 1.30 (1.14, 1.47) 1.32 (1.17, 1.50) 1.06 (0.93, 1.21) Reference

Baseline BMI

Normal 1.34 (1.11, 1.63) 1.14 (0.94, 1.38) 1.03 (0.84, 1.26) Reference 0.85

Overweight 1.25 (1.04, 1.51) 1.37 (1.14, 1.65) 1.03 (0.85, 1.25) Reference

Obese 1.39 (1.10, 1.75) 1.37 (1.08, 1.74) 1.19 (0.93, 1.53) Reference

Smoking status

Never 1.23 (1.02, 1.47) 1.19 (1.00, 1.42) 0.98 (0.81, 1.18) Reference 0.33

Former 1.69 (1.29, 2.20) 1.65 (1.28, 2.12) 1.33 (1.03, 1.71) Reference

Current 1.28 (1.06, 1.54) 1.24 (1.01, 1.52) 1.00 (0.80, 1.24) Reference

FVC decline

Age, years

< 60 1.64 (1.31, 2.05) 1.34 (1.08, 1.67) 1.18 (0.96, 1.46) Reference < 0.001

≥ 60 1.13 (0.98, 1.30) 1.03 (0.90, 1.19) 0.98 (0.84, 1.14) Reference

Sex

Women 1.25 (1.07, 1.47) 1.09 (0.94, 1.28) 1.01 (0.86, 1.18) Reference 0.50

Men 1.32 (1.10, 1.58) 1.22 (1.01, 1.46) 1.09 (0.90, 1.31) Reference

Race

Non-white 1.51 (1.10, 2.08) 1.15 (0.79, 1.67) 1.02 (0.70, 1.48) Reference 0.95

White 1.26 (1.11, 1.43) 1.16 (1.03, 1.32) 1.06 (0.93, 1.21) Reference

Baseline BMI

Normal 1.28 (1.06, 1.56) 1.10 (0.91, 1.33) 1.08 (0.89, 1.31) Reference 0.85

Overweight 1.16 (0.96, 1.39) 1.02 (0.84, 1.23) 0.96 (0.79, 1.17) Reference

Obese 1.40 (1.09, 1.79) 1.50 (1.16, 1.93) 1.17 (0.90, 1.51) Reference

Smoking status

Never 1.28 (1.06, 1.54) 1.20 (1.00, 1.44) 1.25 (1.04, 1.51) Reference 0.33

Former 1.24 (0.94, 1.63) 1.15 (0.87, 1.53) 1.01 (0.75, 1.36) Reference

Current 1.36 (1.13, 1.63) 1.10 (0.90, 1.34) 0.87 (0.73, 1.08) Reference

Adjusted model: adjusted for age, sex, race, education level, marital status, history of hypertension, diabetes, coronary heart disease, heart failure, chronic
obstructive pulmonary disease, smoking status, current alcoholic use, physical activity, body mass index, fasting serum glucose, total cholesterol, high-density
lipoprotein cholesterol, triglycerides, and low-density lipoprotein cholesterol
FEV1 forced expiratory volume in one second, FVC forced vital capacity
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reference group (Q4). This indicates that the threshold
of lung function decline for increased risk of cardiovas-
cular events is much lower than the perceived “normal
value” reported in previous studies [15, 21].

Effect modifications of some covariates
The increased risk of cardiovascular events in individuals
with lung function decline was consistent across nearly
all subgroups. But notably, this relationship was signifi-
cantly modified by age. It surprised us that this associ-
ation is more evident in younger individuals and only
significant in the most rapidly declining quartile among
the old. This is in line with the subgroup findings from
an international-based cohort study, showing severe
FEV1% impairment had the greatest effect on mortality
of the subgroup younger than 50 years [7]. One pro-
posed hypothesis for this observation is that older popu-
lations are at higher risk for cardiovascular events
regardless of lung function, and thus, lung function may
not provide additional prognostic information in this
setting. Smoking status is often considered as an effect
modifier when evaluating lung function; however, no sig-
nificant interaction was seen in our analysis. Although a
similar finding has been reported by Anthonisen et. al,
in which smoking habit did not significantly influence
the association of FEV1 decline and mortality risk [25],
further research is needed.

Potential mechanism and clinical implications
The reason for the association between longitudinal
change in lung function and subsequent risk of cardio-
vascular events is not fully explained, but a number of
mechanisms have been suggested. One is that reduced
vital capacity is an indicator of biologic aging [8] and
frequently shared similar risk factors with cardiovascular
diseases [7]. However, the association persisted after ad-
justment of the above risk factors, implying that there is
a real interplay between lung function decline and car-
diovascular events. It is also been proposed that rapid
lung function decline is associated with chronic inflam-
mation [6, 34], which could induce substantial remodel-
ing of the airway or respiratory structure [15, 35]. This
would subsequently lead to ventilation/perfusion mis-
match, causing progressive impairment of oxygen deliv-
ery and end-organ ischemia [12, 36, 37]. On the other
hand, owing to lung function impairment, the ability of
capturing and eliminating external toxic agents through
the lungs would be compromised [6, 38] and the expos-
ure insults could directly damage the heart.
It is clear from our study that accelerated lung func-

tion decline contributes significantly to cardiovascular
diseases. Given the observational nature of this study, we
could not confirm the cause-effect relationship between
lung function decline and cardiovascular risks. However,

following the Bradford Hill Criteria [39], the temporal
relationship of a preceding exposure and subsequent
events, the consistent findings across a series of analyses,
and the evidence of a dose-response increase in risks
gave further support to the causality. Generally, the
current findings help to identify the high-risk popula-
tions and open new opportunities for prevention and
early intervention. As previously presented in COPD
populations, smoking cessation is able to alter the nat-
ural course of lung function decline [18]. Furthermore,
avoiding dust and endotoxin exposure and reducing psy-
chological disturbances could possibly decelerate the
yearly rate of change in FEV1 [22, 33]. Our results high-
light the value of periodic spirometric evaluation and the
need to conduct intervention studies; maintaining opti-
mal pulmonary health might prevent cardiovascular risk
in later life.

Limitations
However, a few limitations of this study should be ac-
knowledged. Firstly, although both multivariable models
and a serial of sensitivity analyses were performed, the
effects of unmeasured cofounders could not be elimi-
nated. Secondly, since the majority of the study partici-
pants were white US people, the results could not be
generalized to more heterogeneous populations. In
addition, owing to the observational nature of this study,
the reverse causation of lung function decline and an oc-
cult illness could not be distinguished. However, the
consistency, temporality, and biological gradient of our
results could to some extent provide some evidence.

Conclusions
From this study, we observed a monotonic increase in
risks of cardiovascular events with a faster decline in
FEV1 and FVC. The inverse association was generally
consistent in male or female, white or non-white,
smokers or non-smokers, and normal weight or obese
populations, but more evident in younger adults. These
findings emphasize the value of periodic evaluation of
lung function in the general population. Although main-
taining optimal pulmonary health could be a potential
strategy for preventing cardiovascular events in later life,
further intervention studies are warranted.
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