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Abstract
A long-standing goal of science is to accurately simulate large molecular systems using quantum
mechanics. The poor scaling of current quantum chemistry algorithms on classical computers,
however, imposes an effective limit of about a few dozen atoms on traditional electronic structure
calculations. We present a machine learning (ML) method to break through this scaling limit for
electron densities. We show that Euclidean neural networks can be trained to predict molecular
electron densities from limited data. By learning the electron density, the model can be trained on
small systems and make accurate predictions on large ones. In the context of water clusters, we
show that an ML model trained on clusters of just 12 molecules contains all the information
needed to make accurate electron density predictions on cluster sizes of 50 or more, beyond the
scaling limit of current quantum chemistry methods.

1. Introduction

One of the grand challenges of science is to simulate large molecular systems like solvated biological
macromolecules from first principles quantum physics. The ability to perform such ab initio simulations
would enable us to predict protein-drug binding, analyze the behavior of materials, and design new enzymes.
Unfortunately, large quantum chemistry calculations like these are currently impossible. This is not because
the laws of quantum mechanics are not well understood; it is because the algorithms with which they are
implemented on classical computers scale sharply with increasing system size. For instance, the so-called
‘gold standard’ method of quantum chemistry, coupled cluster, scales as O(N6) or O(N7) with system size. In
practical terms this means that while a coupled cluster calculation on a single water molecule might take only
a few minutes, an equivalent calculation on a small protein would take several ages of the universe. This
behavior defines the scaling limit of about a few dozen atoms for rigorous quantum chemistry.

Despite the scaling of quantum chemistry algorithms, there is no fundamental rule stipulating that
large-scale quantum mechanics calculations cannot be done. The origin of the scaling problem is electron
correlation. However, we know both empirically and theoretically that this phenomenon of electron
correlation cannot have infinite range. The principle of the ‘nearsightedness of electronic matter’ introduced
by Walter Kohn in 1996, states that there must be some scale at which electron correlation approaches zero
[1, 2]. Prodan and Kohn give a concrete definition of this concept: the nearsightedness of a given molecular
system is the smallest distance such that any perturbing charge density outside of this radius produces a
change in the local charge density smaller than some tolerance [2]. In formal terms, the nearsightedness
range at a given point is:

R(r0,∆ρ) =min r s.t.∆ρ(r0,ρ(r ′))< ∆̃ρ (1)
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where r0 is the point under consideration,∆ρ is the change in charge density at r0, r is the distance from r0,

ρ(r ′) is a perturbing charge density lying entirely outside of r and ∆̃ρ is the tolerance. In Prodan and Kohn’s
original formulation, this is an absolute definition; ρ(r ′) can be any arbitrarily large perturbation. This
definition leads to the conclusion that insulators are ‘classically farsighted’. In practice, however, we are rarely
interested in arbitrarily large perturbations. In calculations of biomolecular systems near room temperature,
for instance, we are mainly interested in perturbations due to the rearrangement of a limited set of nearby
atoms. This suggests the possibility of an alternative, context-dependent definition of nearsightedness where
the set of perturbations is limited to only those relevant to the system we aim to simulate. Finding the range
of this context-dependent nearsightedness is essential to the project of large-scale quantum simulation.

The nearsightedness principle is already employed in some techniques in quantum chemistry. Notable
examples include linear-scaling density functional theory (DFT) and local coupled cluster methods [3–9].
Although these methods are nominally linear scaling, their considerable computational expense still renders
them untenable for large-scale simulation. To overcome this computational expense, a large body of work has
focused on developing machine learned potential energy surfaces, or machine learned force fields. These
models, however, all suffer from the same problem: although the goal is to simulate large molecular systems,
the training data is limited to small-scale systems for which reference calculations are possible. This leads
most machine learning (ML) force fields to miss long-range forces, because they are not in the training data.
A recent review by Unke and co-workers gives an excellent example [10]. They examined the ability of
various ML force fields to predict the torsional energy profile for a sequence of linear cumulene-hydrocarbon
chains of increasing length. They found that as the chain length increases past the cutoff radius of the model,
the quality of the ML force field rapidly degrades due to the model’s inability to capture long-range
interactions. This breakdown indicates that the strategy of ML energies and forces may not be fully
capitalizing on the nearsightedness of molecular systems.

In this paper we present a ML model that exploits the nearsightedness of electronic matter to perform
ab initio electron density calculations on systems beyond the scaling limit of quantum chemistry algorithms.
The model is trained to predict the electron density, one of the most fundamental quantum properties of a
molecular system. We show that a model which learns the electron density can capitalize on the
context-dependent nearsightedness of molecular systems in a way that a model which learns energies and
forces does not. Groundbreaking work established that it is possible to machine learn an electron density and
subsequent work has highlighted the potential for machine learned density models [11–19]. In particular,
this study builds off the pioneering work using equivariant Gaussian process regression to predict electron
densities of molecules in [12, 13]. Using a new class of ML algorithm, Euclidean neural networks (e3nns), we
show that it is possible to train a model on electron densities of small clusters of molecules and make
accurate predictions on large clusters.

The results presented here will demonstrate not only that accuracy on large clusters is empirically
possible, but also that there exists a maximum training cluster size beyond which the accuracy of the model
does not increase. This suggests the existence of a concrete, system-dependent ‘radius of electronic
nearsightedness’ which the ML model can find and exploit to make possible arbitrarily large, systematically
improvable electron density predictions. In this way, the model presented here is more than just a surrogate
for quantum chemistry. Here, ML gives us a unique tool to examine the nature of electron correlation in
condensed phase molecular systems. We conclude by demonstrating high-level, correlated quantum
chemistry electron density predictions on systems of more than 1000 atoms, well beyond the quantum
chemistry scaling limit.

2. Results

2.1. The importance of equivariance
The basic task of our model is to learn the ab initio electron density distribution surrounding a set of
molecules. An efficient and well-established way to represent this density is to expand it as a linear
combination of atom-centered Gaussian basis functions,

ρ(r) =
Natoms∑
i=0

Nbasis∑
k=0

lmax∑
l=0

l∑
m=−l

CiklmYl,me−αikl(r−ri)
2

(2)

where Yl,m are the real spherical harmonics, αikl are the Gaussian widths of each basis function, and Ciklm are
the coefficients for each basis function on each atom [20]. Previous work has shown that standard quantum
chemistry ‘density fitting’ basis sets which specify a list of Yl,m and αikl for each element work well for
representing an ab initio density [13]. By choosing a density fitting basis set, our ML model is trained simply
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Figure 1. The importance of equivariance. Two models, one invariant and one equivariant, are trained on the electron density of a
single water molecule. The input one-hot embedding scheme is the same for both models. Both graph neural networks have 3
hidden layers. The invariant network has 100 scalars per node. The equivariant network has 10 scalar, 3 vector, and 2 rank-two
tensor features per node. Both networks are tested on three randomly rotated versions of the input water molecule. The errors in
the predicted electron density for each are plotted, with red and blue indicating positive and negative errors, respectively. Density
difference error, calculated according to equation (3), is listed in parenthesis. The equivariant network achieves precisely zero
error on all members of the test set, while the invariant model does not.

to predict the Ciklm coefficients computed by quantum chemistry. Because each basis function contains a
spherical harmonic, each Ciklm coefficient is part of a geometric tensor which represents a 3D contribution to
the electron density. For instance, for an l = 1, or p-type, basis function there are three Ciklm coefficients that
represent the x, y, and z components of that basis function’s contribution to the density.

Learning the coefficients of geometric tensors is a unique task for ML. Objects in 3D space have certain
symmetries; namely they are invariant to permutations and translations, and equivariant to rotations.
Equivariance is an intuitive concept: if the input coordinates of a molecule are changed by some arbitrary
rotation, the various basis functions that compose its density should rotate with it. This symmetry, however,
is not a feature of most current ML algorithms. We have recently developed a ML framework, called e3nns,
which encodes all the symmetries of 3D Euclidean space, including equivariance [21–23]. Recent work has
highlighted the importance of this property for 3D learning problems. The AlphaFold 2, RoseTTAFold,
EquiFold, and ARES models for protein and nucleic acid structure prediction use equivariant ML algorithms
[24–27]. Our e3nn framework has been shown to reduce the amount of training data needed for 3D data by
a factor of 1000, compared with models that do not include symmetry [28]. And previous electron density
learning work using Gaussian process regression, another type of ML algorithm, has shown equivariance is a
desired property for density predictions [12]. We set out to test the importance of equivariance for this task
of neural network-based electron density prediction.

In figure 1 we show that equivariance is required for an electron density model expressed in an
atom-centered basis. In this experiment, we overtrained an equivariant e3nn model on the electron density
of a single water molecule. Then we tested that model on rotated versions of the same molecule. We also did
the same for an invariant model. Invariant ML models are ubiquitous in the ML for chemistry field. They
guarantee that the outputs of a model do not change with translation or rotation of a molecule. Figure 1
clearly shows that for this electron density learning task, invariance is not sufficient; equivariance is required.
The invariant model produces large, rotation-dependent errors on rotated versions of the water molecule.
Because the density representation contains vectors and higher rank tensors, the equivariant model produces
identical densities for identical objects, while the invariant model does not.

Beyond this simple example, we set out to find if equivariance confers any practical advantage in data
efficiency for a real problem. To test this, we set up a learning problem on electron densities of clusters of ten
water molecules. The e3nn framework achieves equivariance by imposing that the features at every hidden
layer of the neural network be direct sums of irreducible representations. In 3D space, these can be
interpreted as spherical harmonics. For practical construction of networks, the user selects a highest angular
frequency or degree, l, for hidden layer features. Previous work has indicated that the presence of l > 0
features can increase the data efficiency of neural networks [28]. We set out to test the extent to which this is
true for electron densities. We trained five different, equal size, neural networks with lmax of 0, 1, 2, 3, 4, and
5. The results, plotted in figure 2, show a dramatic increase in data efficiency from including lmax > 1 features
in the network. A network with lmax = 2, for instance, achieves a density difference of 0.44% with just 100
training samples, while a lmax = 0 network requires 10 000 training samples, to reach similar accuracy.
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Figure 2. The importance of equivariant features. Learning curves on the n= 10 water cluster database for e3nn networks with
hidden layer features of increasing degree, lmax, are plotted on a log-log scale. Each network contains equal numbers of features.
All curves show characteristic log–log linear dependence for number of training samples vs. density difference error. Both the
slope and offset of the learning curves improved by adding lmax > 0 features, up to lmax = 2. (The notation for specifying the
hidden features is: ‘multiplicity x l parity’. For example, ‘33 x 1e’ denotes 33 l= 1 features with even parity).

2.2. DFT experiments
Our first set of experiments was done using DFT. We chose to use the PBE0 density functional because it
produces the most accurate (closest to coupled cluster) electron densities for small test systems [29]. For all
experiments presented in this paper, we use the database of water cluster minima, assembled by Rakshit and
co-workers [30]. Water clusters make an ideal system of study here because they isolate the problem of
learning intermolecular interactions from the problem of learning chemical diversity. The database of water
cluster minima contains structures of all known energy minima of water cluster sizes 3–30. All target electron
density calculations were performed with the psi4 quantum chemistry package (see supplementary
materials) [31]. The scheme of the following experiments is to train an e3nn model on structures of small
clusters, and then test the model on the largest clusters.

2.2.1. Experiment 1: the effect of cluster size on density prediction
For our first experiment, we set out to investigate the effect of training set cluster size on the predicted
electron densities of the largest clusters available, 30 water molecules. We chose to start at a cluster size of
n= 7, since lower cluster sizes all have fewer than 100 structures. We trained separate models on cluster sizes
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Figure 3. Convergence of electron density prediction with training cluster size. Identical e3nn models are trained on electron
densities of increasing water cluster sizes. Each model is then tested on predicting the electron densities of the large n= 30 water
cluster test set. Density difference error on the n= 30 set is plotted vs. training cluster size. Example clusters are shown for the
training and test sets. The density prediction on n= 30 converges around a training cluster size of n= 12. (The average cluster
radii are 5.5, 5.8, 6.1, 6.8, 7.8, 8.0, 9.7 and 10.6 Å for n= 7, n= 8, n= 10, n= 12, n= 15, n= 20 and n= 25, respectively.)

n= 7, 8, 10, 12, 15, 20, and 25, and then evaluated those models on predictions of the electron density of
n= 30. The quality of the prediction on each structure was calculated using the standard measure of density
difference,

ϵp (%) = 100

´
dr |ρQM (r)− ρML (r)|´

drρQM (r)
(3)

where and ρQM is the target density, ρML is the predicted density, and the integral is evaluated on a grid of
spacing 0.1 Å. A density difference value of 0% indicates identical densities. As a point of reference,
superimposing spherical, isolated atom densities typically yields errors of about 20% [12]. For each training
set, we made sure to include identical numbers of atoms to normalize the total number of samples in the set.

The results in figure 3 show a striking behavior. For low cluster sizes (n= 7–10), the performance on
n= 30 predictably increases with increasing cluster size. However, starting at cluster size n= 12, the
performance on n= 30 converges. This means that the e3nn can accurately learn the electron density of any
given atom from an environment of just 12 molecules and that this function is virtually unchanged by the
addition of more molecules. Even training with n= 25, a cluster size generally assumed to have more bulk
solution properties like n= 30, does not improve the performance of the model on n= 30. In this
experiment, the model is unable to find any signal of density contributions to a given atom outside of the
average radius of a 12 water molecule cluster, about 6.8 Å.

The converged models trained in this experiment achieve average density differences of 0.4%, on par with
the current state-of-the-art in electron density prediction. As a point of reference, this error is smaller than
the error of the Perdew–Burke–Ernzerhof (PBE) density functional vs. full configuration interaction (FCI)
on H2 in the complete basis set limit [32]. Using the model density trained with cluster size n= 12, we
computed the electrostatic potential at the van der Waals 0.002 e-/bohr−3 isodensity surface of every n= 30
structure. An example of the accuracy of this electrostatic potential energy surface is shown in figure S5. The
average root mean squared error across all structures is 0.006 a.u. This is comparable to state-of-the-art deep
neural networks trained directly on the electrostatic potential surface itself [33].

To rule out the possibility that the convergence behavior shown in figure 3 is a result of extrapolation, we
performed a set of experiments replicating this experiment for other test set cluster sizes. The results of these
tests are analyzed in figures S9 and S10 in the supplementary materials. The tests show identical convergence
behavior regardless of test set cluster size, indicating that extrapolation is not a primary cause of convergence.
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Figure 4. Atomic force prediction with increasing training cluster size. (Left) Identical e3nn models are trained on energies and
forces of increasing training cluster sizes. Each model is then tested on predicting the atomic forces of the n= 30 water cluster test
set. Mean absolute error (MAE) in the forces is plotted vs. training cluster size. No convergence behavior is seen. Increasing the
size of the training cluster consistently improves the prediction of n= 30 forces. (Right) Long-range Hellmann–Feynman forces
for each training cluster size are calculated from the corresponding ML electron density model. The Hellmann–Feynman forces
exhibit the same convergence behavior as the densities themselves.

2.2.2. Experiment 2: the effect of cluster size on force prediction
The majority of the work in ML for quantum chemistry to date has focused on energies and forces [10]. In
our second experiment we set out to see if training an e3nn model on energies and forces would produce the
same cluster size convergence behavior as the electron density learning model. The architecture of the model
tested is identical to that used in Experiment 1. The only difference is the outputs of this model are energy and
forces as opposed to coefficients of basis functions. ML forces are calculated as atomic position derivatives of
the energy using backpropagation, ensuring that the learned forces are conservative [34]. We evaluated this
model by comparing the predicted force vs. the reference force for the n= 30 water cluster test set.

The results, plotted in figure 4, show that training on energies and forces does not produce the same
behavior as training on densities. The accuracy of the resulting models is excellent. The model trained on the
n= 25 clusters, achieves a mean absolute error of 0.1 kcal/mol/Å. This error is comparable to state-of-the-art
ML force fields, with an error of less than 1% on the 10.2 kcal/mol/Å average total force magnitude of the
n= 30 test set [28]. However, there is no convergence as is seen with densities. The mean absolute error in
forces on the large system decreases monotonically with system size. This does not mean that convergence
will never occur, but it does mean that it has not been reached by n= 30 for this system.

One of the many properties that can be derived from the electron density is forces, via the
Hellmann–Feynman theorem. The Hellmann–Feynman theorem states that given an electron density,
atomic forces can be calculated exactly from simple electrostatics [35]. In practice, however, the
Hellmann–Feynman theorem is not valid for short-range forces with basis sets like the aug-cc-pVTZ basis set
used in this work [36–39]. It is perfectly valid, however, to compute long-range forces with the
Hellmann–Feynman theorem. To test the behavior of these long-range forces with increasing training set
cluster size, we computed the long-range contribution to the Hellmann–Feynman forces (see supplementary
materials for details) from the predicted densities of the models trained in Experiment 1. These results are
also plotted in figure 4. Like the ML forces, the long-range Hellmann–Feynman forces calculated from the
ML electron densities of Experiment 1 are very accurate. For example, the long-range Hellmann–Feynman
forces calculated from the ML electron density model trained on the n= 12 dataset give a mean absolute
error of 0.5 kcal/mol/Å on the n= 30 test set. This is an error of 3% on the average long-range force
magnitude of 16.0 kcal/mol/Å. Note that the average total magnitude of the forces in the long-range case is
larger than for the total forces because the structures in the database are close to DFT minima.

Most importantly, figure 4 illustrates that the long-range Hellmann–Feynman forces computed from the
electron density model follow the same behavior with respect to cluster size as the densities themselves. The
accuracy of the prediction on 30 water molecule clusters converges around a training cluster size of n= 12.
The convergence of these long-range forces corroborates the main observation: equivariant neural networks
trained on the electron density converge much more rapidly with cluster size than models trained on
energies and forces.
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Figure 5. Convergence of ML(CCSD) electron densities with training set cluster size. Identical e3nn models are trained on CCSD
electron densities of increasing water cluster sizes. Density difference error vs. training cluster size is calculated against two
different target electron densities. (Left) Models are evaluated against CCSD electron densities for the n= 15 ‘reference’ water
cluster database. (Right) Models are evaluated on the n= 30 water cluster structures against reference ML(CCSD) electron
densities trained on the n= 15 ‘reference’ set. Also plotted for both panels is the performance of the trained ML(DFT) models
from Experiment 1 against the respective references.

2.3. Coupled cluster experiments
Coupled cluster methods are the so-called gold-standard of quantum chemistry. They are accurate and
expensive to compute because they systematically include the effects of electron correlation across an entire
molecular system. The two most commonly used versions, CCSD (coupled cluster with single and double
excitations) and CCSD(T) (coupled cluster with single and double perturbative triple excitations), are used
as benchmarks against which other approximate methods are measured [40]. In many cases coupled cluster
is accurate enough to be used as a surrogate for experiment when experimental data is unavailable [41].
Because of the O(N6) or worse scaling, however, it is virtually impossible to perform these calculations on
anything more than a few dozen atoms. We endeavored to see if a ML electron density model can be used to
perform correlated coupled cluster calculations that break through this scaling limit.

2.3.1. Experiment 3: coupled cluster density prediction
In Experiment 3, (just as in Experiment 1) we trained ‘experiment’ ML models on CCSD electron densities
of training set cluster sizes n= 7–15. Because CCSD calculations on the n= 30 cluster size are impossible, we
were forced to employ two surrogates to evaluate how well these ‘experiment’ models perform on larger
structures.

We first created a separate ‘reference’ set of n= 15 CCSD electron density calculations that does not
include the data used to train the n= 15 ‘experiment’ model. The left side of figure 5 shows the accuracy of
each trained ‘experiment’ model on this n= 15 CCSD ‘reference’ test set. These n= 15 CCSD calculations,
however, are lacking as a surrogate for bulk water structure. Therefore, we set out to create a second method
to evaluate the quality of the ‘experiment’ models on the n= 30 water cluster structures. To do this, we
trained a separate ML model on the ‘reference’ n= 15 CCSD electron densities. We then compared the
predicted electron densities of the ‘experiment’ models against the electron densities of the ‘reference’ model
on the structures of the n= 30 water cluster database. This allows us to make comparisons on n= 30
structures using our best-possible ML(CCSD) estimate. The right side of figure 5 shows this comparison.
The curve exhibits the same convergence behavior seen in Experiment 1.

We also tested the ML(DFT) models trained in Experiment 1. We calculated the density difference
between the densities predicted by the ML(DFT) and both reference densities. The results show that the ML
model can clearly distinguish between CCSD and DFT levels of theory. The error of the ML(DFT) with
respect to the reference ML(CCSD) model is consistent with the average density difference error of DFT vs.
CCSD from quantum chemistry on the n= 7 set of about 2%.

2.3.2. Experiment 4: large-scale predictions
Lastly, we used the ML(CCSD) electron density network from Experiment 3, trained on clusters of n= 12
water molecules, to predict the electron densities of structures well beyond the scaling limits of quantum
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Figure 6.Machine learned electron densities past the quantum scaling limit. Panel (A) shows the time to calculate the electron
density of water clusters of increasing size for DFT, CCSD, and our Euclidean neural network. The shaded area to the right of the
dashed vertical line roughly denotes the area inaccessible to quantum chemistry, past the scaling limit. CCSD calculations in this
regime would take more than 100 CPU-years. The Euclidean neural network exhibits linear scaling. The insert shows the machine
learned CCSD prediction for a 64 water molecule cluster. Panel (B) shows the density difference map between the ML(DFT) and
DFT densities. Panel (C) shows the density difference map between the ML(DFT) and ML(CCSD) predictions. Values are in
10−1 bohr–3. In both (B) and (C), the density difference is shown in parentheses. Note that the density difference between the
ML(DFT) and ML(CCSD) models is larger than the intrinsic error of ML(DFT) itself, indicating that the ML model is picking up
bona fide differences between CCSD and DFT.

chemistry. In figure 6 we show predictions for clusters of 64 and 6400 molecules. While a calculation on 64
water molecules is outside of the scaling limit for coupled cluster, it is still possible for DFT. Figure 6 shows
that the ML model trained on n= 12 water clusters is still accurate for the n= 64 structure. Moreover, the
ML models are clearly able to distinguish between DFT and CCSD levels of theory, even for this large
structure. On the other hand, 6400 water molecules is beyond the reach of almost any quantum chemistry
method. Figure 6 shows that large calculations pose no problem for the neural network. While a full CCSD
calculation on 6400 water molecules would take more than the age of the universe, the electron density of
this structure can be calculated with near-CCSD accuracy in under one second with a e3nn model on a single
graphics processing unit.

3. Discussion

The experiments in this work probe the ability of e3nns to learn molecular electron densities. Several
interesting observations arise from the results of these experiments.

Equivariance is essential for an accurate ML model of electron densities. The data we are predicting in
this task are geometric tensors, and the results in figure 1 show that equivariance is a required attribute for
sensible results for this data type. Moreover, figure 2 shows that the presence of higher-order (l > 1) tensors
in the hidden layers of an equivariant network confers a large increase in data-efficiency. This suggests that
having features in the network that have the same data type as the target output is a natural fit for the
learning task.

The practical implication from this work is a recipe for how to solve the ‘training data problem’ in the
ML for chemistry field. The goal of most ML for chemistry models is to perform calculations on systems that
are too large for ab initio calculations. The problem, however, is that it is impossible to generate training data
for these large systems. This poses an existential conundrum for condensed-phase molecular systems where
long-range forces matter. Omitting long-range forces can produce large errors in molecular dynamics
simulations [42]. If the training data cannot capture long-range forces, then the model will not be accurate.
This work suggests that learning the electron density is a way out of this trap. The data in figures 3 and 5
show that it is possible to train on small clusters of molecules and expect similarly accurate predictions on
larger clusters. Importantly, the minimum training cluster radius of 7 Å for water suggests that this strategy is
practically viable with current computer hardware.
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By restricting the training data used for a given ML model, we were able to articulate a rigorous scientific
question: what is the effective radius needed to make accurate predictions of the electronic structure of bulk
water? Experiments 1 and 3 directly address this question and show striking convergence behavior. We
suggest that this is the result of the neural network picking up an effective ‘radius of electronic
nearsightedness’ for water clusters. Figures 3 and 5 show that, up to the sensitivity of the model, electrons
outside of a radius of about 7 Å, have no measurable effect on the electron density surrounding an atom.
This is not an indirect or implied measurement of nearsightedness. The range of nearsightedness laid out by
Prodan and Kohn is couched in terms of the electron density. The machine learned electron density models
directly measure the change in electron density due to perturbations in an atom’s surrounding neighborhood.

It is possible that this observation is an artifact of limitations in the model. However, the results of
Experiment 2 suggest that this is not the case. In Experiment 2, we used an identical neural network
architecture, but predicted atomic forces rather than electron densities. In this case, the network does pick up
signal from atoms outside of the 7 Å radius observed for electron densities. This data suggests that learning
the electron density may be a better route to the goal of simulating large systems from small-scale training
data than learning the forces themselves.

It may seem curious that the density-learning and force-learning experiments produce differing behavior,
but perturbation theory offers a straightforward interpretation of this observation. A toy example illustrates
this clearly. An atom, A, 10 Å away from another atom, B, can exert a force on atom B without substantively
changing atom B’s electronic structure. To compute the force atom A exerts on atom B, the first order
contribution is from the electric field generated by A at B. Then, the second and higher order contributions
come from the relaxation of the electron density of B in response to the field, field gradient, etc from A. For
well-behaved systems at long-range, the first order effect should dominate, with second and higher order
contributions producing diminishing effects. This is exactly in line with rigorous symmetry adapted
perturbation theory of intermolecular interactions [43]. Moreover, recent work comparing the many-body
expansion convergence for energy versus electron density showed that electron densities converge at lower
body-order than energies for molecular clusters [44]. Our observation that learned densities converge faster
than forces with cluster size is consistent with this result, suggesting that the effects of electron correlation at
long range are well-behaved and systematically diminishing for water clusters.

This study demonstrates that ML models can be more than just surrogates. In this case, the ML model
does not just reproduce quantum chemistry calculations, it tells us something about quantum chemistry
itself. Despite the conceptual appeal of the principle of ‘nearsightedness of electron matter’, applying this
principle in practice is challenging. For non-metals, in fact, there is no absolute definition of nearsightedness.
It has proved difficult to devise experiments that measure the range of nearsightedness for molecular
systems. The ML models here give us an unbiased tool to explore the nature of this range from data. In a
general sense, the model probes something unknown (physical electron density correlations) by examining
something that is known (statistical correlations in neural networks).

Our results suggest that the same behavior observed for DFT holds for coupled cluster results as well.
This is noteworthy because while the density functional used for the ML(DFT) models, PBE0, contains some
nonlocal electron correlation, it is not a fully correlated method [45]. CCSD on the other hand, contains full
non-local electron correlation (up to double excitations). This makes it a more stringent test of the ‘effective
radius of electronic nearsightedness’ argument. The fact that we see the same behavior in figure 5 for CCSD
densities as in figure 3 for DFT densities, implies that convergence with training set radius was not an artifact
of the DFT method. It suggests that even at higher, inaccessible levels of theory like CCSD(T) or FCI, this
trend will hold.

There are limitations to the ML electron density framework presented here. First, the ‘radius of
nearsightedness’ suggested here is likely to be highly system dependent. Further work will be required to
characterize this limit for more complex systems like biomolecular fragments. Some recent work has started
in this area for DNA [46]. Second, while this framework gives a recipe for predicting accurate electron
densities of large systems, extending this to forces is not trivial. Using the Hellmann–Feynman theorem to
calculate forces with standard basis sets suffers from so-called Pulay errors. These errors are large enough to
these forces unusable for applications like molecular dynamics. We note, however, that recent work has
shown it is possible to construct basis sets which minimize the Pulay error [47]. Combining these
Hellmann–Feynman-optimized basis sets with this ML electron density framework may offer a promising
path forward.

4. Conclusions

The electron density is one of the most important physical observables of a molecular system. Unfortunately,
computing the electron density for large systems, like biomolecules or condensed phase liquids, with
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traditional quantum chemistry methods is practically impossible. The work presented here shows that a
machine learned electron density model that uses e3nns can break through this quantum scaling limit. In the
case of water clusters, our experiments suggest that this is possible because the networks trained on electron
densities discover an effective ‘radius of electronic nearsightedness’ which is not apparent from an equivalent
model trained on energies and forces. This observation establishes a framework for ML models trained on
the electron densities of small systems that can systematically approach previously impossible gold standard
quantum chemistry results for arbitrarily large molecular systems. The potential impacts are far-reaching.
This framework could be used, for example, to build ab initiomodels of protein dynamics, from a simple
training set of protein fragment interactions. These quantum-accurate simulations would revolutionize
applications from computational drug design to protein engineering.
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